Given six integers X, Y, cnt1, cnt2, C1, and C2, where:
- X and Y represent the maximum calories two friends can consume,
- cnt1 and cnt2 are the numbers of two types of candies,
- C1 and C2 are the calories present in each candy of the two types of available candies.
The task is to find the maximum number of candies the two friends can eat.
Examples:
Input: X = 25, Y = 36, cnt1 = 10, cnt2 = 6, C1 = 5, C2 = 4
Output: 13
Explanation: Candies will be eaten in the following manner.
Friend 1 can eat 5 candies of type 1: 5*5 = 25 <= 25
Friend 2 can eat all 6 candies of type 2 and 2 candies of type 1: 6*4 + 2*5 = 34 <= 36
Thus, total candies = 5 + 6 + 2 = 13.Input: X = 452, Y = 225, cnt1 = 50, cnt2 = 125, C1 = 20, C2 = 30
Output: 33
Approach: This problem is observation-based and can be solved by using the Greedy Approach and trying all possible combinations of the candies two friends can consume from given cnt1 and cnt2 candies and trying to finish the candies with lower calory value first.
Follow the steps below to solve the given problem.
- If the calorie value of candy 1 is greater than that of candy 2, then swap the calorie values and counts of both the candy types to ensure that the candy type with fewer calories is consumed first.
- Initialize a variable maxCandies with 0, to store the maximum number of candies that can be eaten by the two friends.
- Run a loop from i = 0 to i = cnt1 (number of candies of type 1) to check all possible combinations:
- Check if the calories consumed by friend 1(i*C1) are greater than his maximum calorie capacity(X). If this is the case, further statements are not executed,
- Calculate the number of type 1 candies consumed by friend 2 (candy1_frnd2). It is given by:
- Calculate the calorie capacity of friend 1 and friend 2 which they can still consume (say left_frnd1 and left_frnd2 ). It can be given by:
- Calculate the number of type 2 candies consumed by friend1 and friend2 respectively (say candy2_frnd1 and candy2_frnd2). It can be given by:
- Update the maximum number of candies that can be consumed by the two friends:
- Return the final value stored in maxCandies
Below is the implementation of the above approach:
C++
// C++ code to implement the approach #include <bits/stdc++.h> using namespace std; // Function to find the maximum count int maxCount( int X, int Y, int cnt1, int cnt2, int C1, int C2) { // If C1 > C2, swap them if (C1 > C2) { swap(C1, C2); swap(cnt1, cnt2); } int ans = 0; // Loop to find the // maximum count of candies for ( int i = 0; i <= cnt1; i++) { if (i * C1 > X) { continue ; } int ss = min(Y / C1, cnt1 - i); int left_wtf = X - i * C1; int left_wts = Y - ss * C1; int af = min(left_wtf / C2, cnt2); int as = min(left_wts / C2, cnt2 - af); ans = max(ans, i + ss + af + as); } return ans; } // Driver code int main() { int X = 25, Y = 36, cnt1 = 10, cnt2 = 6; int C1 = 5, C2 = 4; // Function call int ans = maxCount(X, Y, cnt1, cnt2, C1, C2); cout << ans << endl; return 0; } |
Java
// JAVA code to implement the approach import java.util.*; class GFG { public static void swap( int m, int n) { int temp = m; m = n; n = temp; } // Function to find the maximum count public static int maxCount( int X, int Y, int cnt1, int cnt2, int C1, int C2) { // If C1 > C2, swap them if (C1 > C2) { swap(C1, C2); swap(cnt1, cnt2); } int ans = 0 ; // Loop to find the // maximum count of candies for ( int i = 0 ; i <= cnt1; i++) { if (i * C1 > X) { continue ; } int ss = Math.min(Y / C1, cnt1 - i); int left_wtf = X - i * C1; int left_wts = Y - ss * C1; int af = Math.min(left_wtf / C2, cnt2); int as = Math.min(left_wts / C2, cnt2 - af); ans = Math.max(ans, i + ss + af + as); } return ans; } // Driver code public static void main(String[] args) { int X = 25 , Y = 36 , cnt1 = 10 , cnt2 = 6 ; int C1 = 5 , C2 = 4 ; // Function call int ans = maxCount(X, Y, cnt1, cnt2, C1, C2); System.out.println(ans); } } // This code is contributed by Taranpreet |
Python
# Python code to implement the approach # Function to find the maximum count def maxCount(X, Y, cnt1, cnt2, C1, C2): # If C1 > C2, swap them if (C1 > C2): C1, C2 = C2, C1 cnt1, cnt2 = cnt2, cnt1 ans = 0 # Loop to find the # maximum count of candies for i in range ( 0 , cnt1 + 1 ): if (i * C1 > X): continue ss = min (Y / / C1, cnt1 - i) left_wtf = X - i * C1 left_wts = Y - ss * C1 af = min (left_wtf / / C2, cnt2) as_ = min (left_wts / / C2, cnt2 - af) ans = max (ans, i + ss + af + as_) return ans # Driver code X = 25 Y = 36 cnt1 = 10 cnt2 = 6 C1 = 5 C2 = 4 # Function call ans = maxCount(X, Y, cnt1, cnt2, C1, C2) print (ans) # This code is contributed by Samim Hossain Mondal. |
C#
// C# code to implement the approach using System; class GFG { static void swap( int m, int n) { int temp = m; m = n; n = temp; } // Function to find the maximum count static int maxCount( int X, int Y, int cnt1, int cnt2, int C1, int C2) { // If C1 > C2, swap them if (C1 > C2) { swap(C1, C2); swap(cnt1, cnt2); } int ans = 0; // Loop to find the // maximum count of candies for ( int i = 0; i <= cnt1; i++) { if (i * C1 > X) { continue ; } int ss = Math.Min(Y / C1, cnt1 - i); int left_wtf = X - i * C1; int left_wts = Y - ss * C1; int af = Math.Min(left_wtf / C2, cnt2); int as_ = Math.Min(left_wts / C2, cnt2 - af); ans = Math.Max(ans, i + ss + af + as_); } return ans; } // Driver code public static void Main() { int X = 25, Y = 36, cnt1 = 10, cnt2 = 6; int C1 = 5, C2 = 4; // Function call int ans = maxCount(X, Y, cnt1, cnt2, C1, C2); Console.WriteLine(ans); } } // This code is contributed by Samim Hossain Mondal. |
Javascript
<script> // JavaScript code to implement the approach // Function to find the maximum count const maxCount = (X, Y, cnt1, cnt2, C1, C2) => { // If C1 > C2, swap them if (C1 > C2) { let temp1 = C1; C1 = C2; C2 = temp1; let temp2 = cnt1; cnt1 = cnt2; cnt2 = temp2; } let ans = 0; // Loop to find the // maximum count of candies for (let i = 0; i <= cnt1; i++) { if (i * C1 > X) { continue ; } let ss = Math.min(parseInt(Y / C1), cnt1 - i); let left_wtf = X - i * C1; let left_wts = Y - ss * C1; let af = Math.min(parseInt(left_wtf / C2), cnt2); let as = Math.min(parseInt(left_wts / C2), cnt2 - af); ans = Math.max(ans, i + ss + af + as); } return ans; } // Driver code let X = 25, Y = 36, cnt1 = 10, cnt2 = 6; let C1 = 5, C2 = 4; // Function call let ans = maxCount(X, Y, cnt1, cnt2, C1, C2); document.write(ans); // This code is contributed by rakeshsahni </script> |
13
Time Complexity: O(N), where N represents the type of candies with a lower calorie value.
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!