Monday, November 18, 2024
Google search engine
HomeData Modelling & AIMaximize sum of XOR of each element of Array with partition number

Maximize sum of XOR of each element of Array with partition number

Given an array arr of positive integers of size N, the task is to split the array into 3 partitions, such that the sum of bitwise XOR of each element of the array with its partition number is maximum.

Examples:

Input: arr[] = { 2, 4, 7, 1, 8, 7, 2 }
Output: First partition: 2 4 7 1 8
Second partition: 7
Third partition: 2
Sum: 244

Input: arr[] = {95, 2, 86, 12, 9, 14, 45, 11}
Output: First partition: 95 2 86 12 9 14
Second partition: 45
Third partition: 11
Sum: 1994

 

Approach: The idea is to use nested loops for three partitions. 

  • Compute the XOR sum of each element of each partition with its partition number.
  • Find the global maximum sum of all three partitions’ XOR sum.
  • Return and print the three partitions and their maximum XOR sum.

Below is the implementation of the above approach:

C++




// C++ program for maximize the sum of
// bitwise XOR of each element of the array
// with it's partition number
 
#include <bits/stdc++.h>
using namespace std;
 
// Utility function to print the partitions
void ShowPartition(vector<int> sum, vector<int> arr)
{
    cout << "First partition: ";
    for (int i = 0; i <= sum[0]; i++)
        cout << arr[i] << " ";
 
    cout << "\nSecond partition: ";
    for (int i = sum[0] + 1; i <= sum[1]; i++)
        cout << arr[i] << " ";
 
    cout << "\nThird partition: ";
    for (int i = sum[1] + 1; i <= sum[2]; i++)
        cout << arr[i] << " ";
 
    cout << "\nSum: ";
    cout << sum[3];
}
 
// Function to maximise the partitions sum
vector<int> MaximumSumPartition(vector<int> arr)
{
    int i, j, k;
    int n = arr.size();
    vector<int> sum(4, 0);
 
    // initialise the dummy sum values.
    int s1 = 0, s2 = 0, s3 = 0, s = INT_MIN;
    int x, y, z;
 
    // nested for  loop
    for (i = 0; i <= n - 3; i++) {
 
        // XOR sum of first partition.
        s1 += 1 ^ arr[i];
        x = i;
 
        for (j = i + 1; j <= n - 2; j++) {
 
            // XOR sum of second partition.
            s2 += 2 ^ arr[j];
            y = j;
 
            for (k = j + 1; k <= n - 1; k++) {
 
                // XOR sum of third partition.
                s3 += 3 ^ arr[k];
                z = k;
 
                // XOR sum of all three partition.
                if (s1 + s2 + s3 > s) {
 
                    s = s1 + s2 + s3;
                    sum[0] = x;
                    sum[1] = y;
                    sum[2] = z;
                    sum[3] = s;
                }
            }
        }
    }
 
    // return the vector.
    return sum;
}
 
// Driver code
int main()
{
    vector<int> sum, arr{ 2, 4, 7, 1, 8, 7, 2 };
 
    sum = MaximumSumPartition(arr);
    ShowPartition(sum, arr);
    return 0;
}


Java




// Java program for maximize the sum of
// bitwise XOR of each element of the array
// with it's partition number
import java.io.*;
 
class GFG {
 
  // Utility function to print the partitions
  static void ShowPartition(int []sum, int []arr)
  {
    System.out.print("First partition: ");
    for (int i = 0; i <= sum[0]; i++)
      System.out.print(arr[i] + " ");
 
    System.out.print("\nSecond partition: ");
    for (int i = sum[0] + 1; i <= sum[1]; i++)
      System.out.print(arr[i] + " ");
 
    System.out.print("\nThird partition: ");
    for (int i = sum[1] + 1; i <= sum[2]; i++)
      System.out.print(arr[i] + " ");
 
    System.out.print("\nSum: ");
    System.out.print(sum[3]);
  }
 
  // Function to maximise the partitions sum
  static int[] MaximumSumPartition(int []arr)
  {
    int i = 0, j = 0, k = 0;
    int n = arr.length;
    int []sum = new int[4];
    for(i = 0; i < 4; i++) {
      sum[i] = 0;
    }
 
    // initialise the dummy sum values.
    int s1 = 0, s2 = 0, s3 = 0, s = Integer.MIN_VALUE;
    int x = 0, y = 0, z = 0;
 
    // nested for  loop
    for (i = 0; i <= n - 3; i++) {
 
      // XOR sum of first partition.
      s1 += 1 ^ arr[i];
      x = i;
 
      for (j = i + 1; j <= n - 2; j++) {
 
        // XOR sum of second partition.
        s2 += 2 ^ arr[j];
        y = j;
 
        for (k = j + 1; k <= n - 1; k++) {
 
          // XOR sum of third partition.
          s3 += 3 ^ arr[k];
          z = k;
 
          // XOR sum of all three partition.
          if (s1 + s2 + s3 > s) {
 
            s = s1 + s2 + s3;
            sum[0] = x;
            sum[1] = y;
            sum[2] = z;
            sum[3] = s;
          }
        }
      }
    }
 
    // return the vector.
    return sum;
  }
 
  // Driver code
  public static void main (String[] args) {
    int []arr = { 2, 4, 7, 1, 8, 7, 2 };
 
    int []sum = MaximumSumPartition(arr);
    ShowPartition(sum, arr);
 
  }
}
 
// This code is contributed by hrithikgarg03188.


Python3




# Python code to implement the approach
import sys
 
# Utility function to print the partitions
def ShowPartition(sum, arr)  :
     
    print("First partition: ", end = '')
    for i in range(sum[0]+1) :
        print(arr[i] , end = " ")
  
    print("\nSecond partition: ", end = '')
    for i in range(sum[0]+1, sum[1]+1) :
        print(arr[i] , end = " ")
  
    print("\nThird partition: ", end = '')
    for i in range(sum[1]+1, sum[2]+1) :
        print(arr[i] , end = " ")
  
    print("\nSum: ", end = '')
    print(sum[3])
   
  
  # Function to maximise the partitions sum
def MaximumSumPartition(arr) :
     
    i = 0
    j = 0
    k = 0
    n = len(arr)
    sum = [0] * 4
    for i in range(0, 4):
        sum[i] = 0
  
  
    # initialise the dummy sum values.
    s1 = 0
    s2 = 0
    s3 = 0
    s = -sys.maxsize -1
    x = 0
    y = 0
    z = 0
  
    # nested for  loop
    for i in range(0, n-2, 1):
  
        # XOR sum of first partition.
        s1 += 1 ^ arr[i]
        x = i
  
    for j in range(i + 1, n - 1, 1) :
  
        # XOR sum of second partition.
        s2 += 2 ^ arr[j]
        y = j
  
    for k in range(j + 1, n, 1) :
  
        # XOR sum of third partition.
        s3 += 3 ^ arr[k]
        z = k
  
        # XOR sum of all three partition.
        if (s1 + s2 + s3 > s) :
  
            s = s1 + s2 + s3
            sum[0] = x
            sum[1] = y
            sum[2] = z
            sum[3] = s
  
    # return the vector.
    return sum
   
# Driver code
arr = [ 2, 4, 7, 1, 8, 7, 2 ]
  
sum = MaximumSumPartition(arr);
ShowPartition(sum, arr);
 
# This code is contributed by code_hunt.


C#




// C# program for maximize the sum of
// bitwise XOR of each element of the array
// with it's partition number
using System;
class GFG
{
 
  // Utility function to print the partitions
  static void ShowPartition(int []sum, int []arr)
  {
    Console.Write("First partition: ");
    for (int i = 0; i <= sum[0]; i++)
      Console.Write(arr[i] + " ");
 
    Console.Write("\nSecond partition: ");
    for (int i = sum[0] + 1; i <= sum[1]; i++)
      Console.Write(arr[i] + " ");
 
    Console.Write("\nThird partition: ");
    for (int i = sum[1] + 1; i <= sum[2]; i++)
      Console.Write(arr[i] + " ");
 
    Console.Write("\nSum: ");
    Console.Write(sum[3]);
  }
 
  // Function to maximise the partitions sum
  static int[] MaximumSumPartition(int []arr)
  {
    int i = 0, j = 0, k = 0;
    int n = arr.Length;
    int []sum = new int[4];
    for(i = 0; i < 4; i++) {
      sum[i] = 0;
    }
 
    // initialise the dummy sum values.
    int s1 = 0, s2 = 0, s3 = 0, s = Int32.MinValue;
    int x = 0, y = 0, z = 0;
 
    // nested for  loop
    for (i = 0; i <= n - 3; i++) {
 
      // XOR sum of first partition.
      s1 += 1 ^ arr[i];
      x = i;
 
      for (j = i + 1; j <= n - 2; j++) {
 
        // XOR sum of second partition.
        s2 += 2 ^ arr[j];
        y = j;
 
        for (k = j + 1; k <= n - 1; k++) {
 
          // XOR sum of third partition.
          s3 += 3 ^ arr[k];
          z = k;
 
          // XOR sum of all three partition.
          if (s1 + s2 + s3 > s) {
 
            s = s1 + s2 + s3;
            sum[0] = x;
            sum[1] = y;
            sum[2] = z;
            sum[3] = s;
          }
        }
      }
    }
 
    // return the vector.
    return sum;
  }
 
  // Driver code
  public static void Main()
  {
    int []arr = { 2, 4, 7, 1, 8, 7, 2 };
 
    int []sum = MaximumSumPartition(arr);
    ShowPartition(sum, arr);
  }
}
 
// This code is contributed by Samim Hossain Mondal.


Javascript




<script>
    // JavaScript program for maximize the sum of
    // bitwise XOR of each element of the array
    // with it's partition number
    const INT_MIN = -2147483647 - 1;
 
    // Utility function to print the partitions
    const ShowPartition = (sum, arr) => {
        document.write("First partition: ");
        for (let i = 0; i <= sum[0]; i++)
            document.write(`${arr[i]} `);
 
        document.write("<br/>Second partition: ");
        for (let i = sum[0] + 1; i <= sum[1]; i++)
            document.write(`${arr[i]} `);
 
        document.write("<br/>Third partition: ");
        for (let i = sum[1] + 1; i <= sum[2]; i++)
            document.write(`${arr[i]} `);
 
        document.write("<br/>Sum: ");
        document.write(sum[3]);
    }
 
    // Function to maximise the partitions sum
    const MaximumSumPartition = (arr) => {
        let i, j, k;
        let n = arr.length;
        let sum = new Array(4).fill(0);
 
        // initialise the dummy sum values.
        let s1 = 0, s2 = 0, s3 = 0, s = INT_MIN;
        let x, y, z;
 
        // nested for loop
        for (i = 0; i <= n - 3; i++) {
 
            // XOR sum of first partition.
            s1 += 1 ^ arr[i];
            x = i;
 
            for (j = i + 1; j <= n - 2; j++) {
 
                // XOR sum of second partition.
                s2 += 2 ^ arr[j];
                y = j;
 
                for (k = j + 1; k <= n - 1; k++) {
 
                    // XOR sum of third partition.
                    s3 += 3 ^ arr[k];
                    z = k;
 
                    // XOR sum of all three partition.
                    if (s1 + s2 + s3 > s) {
 
                        s = s1 + s2 + s3;
                        sum[0] = x;
                        sum[1] = y;
                        sum[2] = z;
                        sum[3] = s;
                    }
                }
            }
        }
        // return the vector.
        return sum;
    }
 
    // Driver code
    let arr = [2, 4, 7, 1, 8, 7, 2];
 
    let sum = MaximumSumPartition(arr);
    ShowPartition(sum, arr);
 
    // This code is contributed by rakeshsahni
 
</script>


Output

First partition: 2 4 7 1 8 
Second partition: 7 
Third partition: 2 
Sum: 244

Time Complexity: O(N3)
Auxiliary Space: O(1)

 

Last Updated :
08 Apr, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Take a part in the ongoing discussion

RELATED ARTICLES

Most Popular

Recent Comments