Monday, November 18, 2024
Google search engine
HomeData Modelling & AIMaximize path sum from top-left cell to all other cells of a...

Maximize path sum from top-left cell to all other cells of a given Matrix

Given a matrix, mat[][] of dimensions N * M, the task is to find the maximum path sum from the top-left cell (0, 0) to all other cells of the given matrix. Only possible moves from any cell (i, j) is (i + 1, j) and (i, j + 1).

Examples:

Input: mat[][] = {{3, 2, 1}, {6, 5, 4}, {7, 8, 9}}
Output:
3 5 6
9 14 18
16 24 33
Explanation:
Path from (0, 0) to (0, 1) with maximum sum is (0, 0) ? (0, 1)
Path from (0, 0) to (0, 2) with maximum sum is (0, 0) ? (0, 1) ? (0, 2)
Path from (0, 0) to (1, 0) with maximum sum is (0, 0) ? (1, 0)
Path from (0, 0) to (1, 1) with maximum sum is (0, 0) ? (1, 0) ? (1, 1)
Path from (0, 0) to (1, 2) with maximum sum is (0, 0) ? (1, 0) ? (1, 2)
Path from (0, 0) to (2, 0) with maximum sum is (0, 0) ? (2, 0)
Path from (0, 0) to (2, 1) with maximum sum is (0, 0) ? (1, 0) ? (2, 0) ? (2, 1)
Path from (0, 0) to (2, 2) with maximum sum is (0, 0) ? (1, 0) ? (2, 0) ? (2, 1) ? (2, 2)

Input: mat[][] = {{10, 20, 30}, {40, 50, 40}, {70, 80, 80}}
Output:
10 30 60
50 100 140
120 200 280

Approach: The problem can be solved using Dynamic Programming. Below is the recurrence relation to solving the problem.

Recurrence relation:
pathSum(i, j) = mat[i][j] + max(pathSum(i – 1, j), pathSum(i, j – 1)) 
where i > 0 and j > 0

Base Case:
If i = 0 and j = 0: return mat[0][0]
If i = 0: return mat[i][j] + pathSum(i, j – 1)
If j = 0: return mat[i][j] + pathSum(i – 1, j)

Follow the steps below to solve the problem:

  1. Initialize the matrix dp[][], where dp[i][j] store the maximum path sum from (0, 0) to (i, j).
  2. Use the above-mentioned recurrence relation to compute the value of dp[i][j].
  3. Finally, print the value of dp[][] matrix.

Below is the implementation of the above approach:

C++




// C++ program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
#define SZ 100
 
// Function to get the maximum path
// sum from top-left cell to all
// other cells of the given matrix
void pathSum(const int mat[SZ][SZ],
             int N, int M)
{
 
    // Store the maximum path sum
    int dp[N][M];
 
    // Initialize the value
    // of dp[i][j] to 0.
    memset(dp, 0, sizeof(dp));
 
    // Base case
    dp[0][0] = mat[0][0];
    for (int i = 1; i < N; i++) {
        dp[i][0] = mat[i][0]
                   + dp[i - 1][0];
    }
 
    for (int j = 1; j < M; j++) {
        dp[0][j] = mat[0][j]
                   + dp[0][j - 1];
    }
 
    // Compute the value of dp[i][j]
    // using the recurrence relation
    for (int i = 1; i < N; i++) {
        for (int j = 1; j < M; j++) {
            dp[i][j] = mat[i][j]
                       + max(dp[i - 1][j],
                             dp[i][j - 1]);
        }
    }
 
    // Print maximum path sum from
    // the top-left cell
    for (int i = 0; i < N; i++) {
        for (int j = 0; j < M; j++) {
            cout << dp[i][j] << " ";
        }
        cout << endl;
    }
}
 
// Driver Code
int main()
{
    int mat[SZ][SZ]
        = { { 3, 2, 1 },
            { 6, 5, 4 },
            { 7, 8, 9 } };
    int N = 3;
    int M = 3;
 
    pathSum(mat, N, M);
}


Java




// Java program to implement
// the above approach
import java.util.*;
class GFG{
 
static final int SZ = 100;
 
// Function to get the maximum path
// sum from top-left cell to all
// other cells of the given matrix
static void pathSum(int [][]mat,
                    int N, int M)
{
  // Store the maximum path sum
  int [][]dp = new int[N][M];
   
  // Base case
  dp[0][0] = mat[0][0];
   
  for (int i = 1; i < N; i++)
  {
    dp[i][0] = mat[i][0] +
               dp[i - 1][0];
  }
 
  for (int j = 1; j < M; j++)
  {
    dp[0][j] = mat[0][j] +
               dp[0][j - 1];
  }
 
  // Compute the value of dp[i][j]
  // using the recurrence relation
  for (int i = 1; i < N; i++)
  {
    for (int j = 1; j < M; j++)
    {
      dp[i][j] = mat[i][j] +
                 Math.max(dp[i - 1][j],
                          dp[i][j - 1]);
    }
  }
 
  // Print maximum path sum from
  // the top-left cell
  for (int i = 0; i < N; i++)
  {
    for (int j = 0; j < M; j++)
    {
      System.out.print(dp[i][j] + " ");
    }
    System.out.println();
  }
}
 
// Driver Code
public static void main(String[] args)
{
  int mat[][] = {{3, 2, 1},
                 {6, 5, 4},
                 {7, 8, 9}};
  int N = 3;
  int M = 3;
  pathSum(mat, N, M);
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 Program to implement
# the above approach
 
# Function to get the maximum path
# sum from top-left cell to all
# other cells of the given matrix
def pathSum(mat, N, M):
 
    # Store the maximum path sum
    # Initialize the value
    # of dp[i][j] to 0.
    dp = [[0 for x in range(M)]
             for y in range(N)]
 
    # Base case
    dp[0][0] = mat[0][0]
    for i in range(1, N):
        dp[i][0] = (mat[i][0] +
                    dp[i - 1][0])
 
    for j in range(1, M):
        dp[0][j] = (mat[0][j] +
                    dp[0][j - 1])
 
    # Compute the value of dp[i][j]
    # using the recurrence relation
    for i in range(1, N):
        for j in range(1, M):
            dp[i][j] = (mat[i][j] +
                        max(dp[i - 1][j],
                            dp[i][j - 1]))
 
    # Print maximum path sum
    # from the top-left cell
    for i in range(N):
        for j in range(M):
            print(dp[i][j],
                  end = " ")
        print()
 
# Driver code
if __name__ == '__main__':
 
    mat = [[3, 2, 1],
           [6, 5, 4],
           [7, 8, 9]]
    N = 3
    M = 3
    pathSum(mat, N, M)
 
# This code is contributed by Shivam Singh


C#




// C# program to implement
// the above approach
using System;
class GFG{
 
static readonly int SZ = 100;
 
// Function to get the maximum path
// sum from top-left cell to all
// other cells of the given matrix
static void pathSum(int [,]mat,
                    int N, int M)
{
  // Store the maximum path
  // sum
  int [,]dp = new int[N, M];
   
  // Base case
  dp[0, 0] = mat[0, 0];
   
  for (int i = 1; i < N; i++)
  {
    dp[i, 0] = mat[i, 0] +
               dp[i - 1, 0];
  }
 
  for (int j = 1; j < M; j++)
  {
    dp[0, j] = mat[0, j] +
               dp[0, j - 1];
  }
 
  // Compute the value of dp[i,j]
  // using the recurrence relation
  for (int i = 1; i < N; i++)
  {
    for (int j = 1; j < M; j++)
    {
      dp[i, j] = mat[i,j] +
                Math.Max(dp[i - 1, j],
                          dp[i, j - 1]);
    }
  }
 
  // Print maximum path sum from
  // the top-left cell
  for (int i = 0; i < N; i++)
  {
    for (int j = 0; j < M; j++)
    {
      Console.Write(dp[i, j] + " ");
    }
    Console.WriteLine();
  }
}
 
// Driver Code
public static void Main(String[] args)
{
  int [,]mat = {{3, 2, 1},
                {6, 5, 4},
                {7, 8, 9}};
  int N = 3;
  int M = 3;
  pathSum(mat, N, M);
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// Javascript program to implement
// the above approach
 
let SZ = 100;
 
// Function to get the maximum path
// sum from top-left cell to all
// other cells of the given matrix
function pathSum(mat, N, M)
{
  // Store the maximum path sum
  let dp = new Array(N);
  // Loop to create 2D array using 1D array
    for (var i = 0; i < dp.length; i++) {
        dp[i] = new Array(2);
    }
   
  // Base case
  dp[0][0] = mat[0][0];
   
  for (let i = 1; i < N; i++)
  {
    dp[i][0] = mat[i][0] +
               dp[i - 1][0];
  }
 
  for (let j = 1; j < M; j++)
  {
    dp[0][j] = mat[0][j] +
               dp[0][j - 1];
  }
 
  // Compute the value of dp[i][j]
  // using the recurrence relation
  for (let i = 1; i < N; i++)
  {
    for (let j = 1; j < M; j++)
    {
      dp[i][j] = mat[i][j] +
                 Math.max(dp[i - 1][j],
                          dp[i][j - 1]);
    }
  }
 
  // Print maximum path sum from
  // the top-left cell
  for (let i = 0; i < N; i++)
  {
    for (let j = 0; j < M; j++)
    {
      document.write(dp[i][j] + " ");
    }
    document.write("<br/>");
  }
}
 
// Driver Code
 
    let mat = [[3, 2, 1],
                 [6, 5, 4],
                 [7, 8, 9]];
  let N = 3;
  let M = 3;
  pathSum(mat, N, M);
 
</script>


Output: 

3 5 6 
9 14 18 
16 24 33

 

Time Complexity: O(N * M)
Auxiliary Space: O(N * M)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments