Wednesday, November 20, 2024
Google search engine
HomeData Modelling & AIMaximize Matrix sum by replacing 0s such that Matrix remains sorted

Maximize Matrix sum by replacing 0s such that Matrix remains sorted

Given a matrix mat[][] of dimension N*M which is sorted row-wise and column-wise, the task is to find the sum of the elements of the matrix by replacing all 0s in the matrix with any value such that the matrix remains sorted row-wise and column-wise. If it is not possible, then print “-1”.

Note: 0s will be only present in internal cells. i.e., neither in the first row or column nor in the last row or column.

Examples:

Input: mat[][] = {{3, 4, 5, 6}, {4, 0, 7, 8}, {6, 8, 0, 10}, {7, 9, 10, 12}}
Output: 116
Explanation:
The new matrix formed after replacing zeroes is:
[[3, 4, 5, 6], 
[4, 7, 7, 8], 
[6, 8, 10, 10], 
[7, 9, 10, 12]]
which is sorted and has a maximum sum i.e. 116

Input: mat[][] = {{1, 2, 4}, {2, 0, 5}, {5, 6, 7}}
Output: 37

Approach: To make the matrix sorted and also to maximize the sums, the zeroes can be replaced by a number that is smaller than or equal to the next element in its row or column. Since the value of zero to be changed depends on the value of its next row and column, the replacement should be done from the end of the matrix. Therefore, traverse the matrix from the end and replace the cells where mat[i][j] is zero with min(mat[i][j + 1], mat[i + 1][j]) and also check the new matrix is sorted or not.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the maximum sum of
// the given matrix after replacing 0s
// with any element
int findMaximumSum(int* mat, int n, int m)
{
    // Traverse the given matrix from
    // the end
    for (int i = n - 2; i > 0; i--) {
        for (int j = m - 2; j > 0; j--) {
 
            // If  the element is 0
            if (mat[i * m + j] == 0) {
 
                // Replace the 0s
                mat[i * m + j]
                    = min(mat[i * m + (j + 1)],
                          mat[(i + 1) * m + j]);
            }
        }
    }
 
    // Stores the sum of matrix elements
    int sum = 0;
 
    // Traverse the matrix mat[][]
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
 
            // Updating the sum
            sum += mat[i * m + j];
 
            // Checking if not sorted
            if ((i + 1 < n
                 && mat[i * m + j]
                        > mat[(i + 1) * m + j])
                || (j + 1 < m
                    && mat[i * m + j]
                           > mat[i * m + (j + 1)])) {
                return -1;
            }
        }
    }
 
    // Return the maximum value of the sum
    return sum;
}
 
// Driver Code
int main()
{
    int N = 3, M = 3;
    int mat[N][M]
        = { { 1, 2, 4 }, { 2, 0, 5 }, { 5, 6, 7 } };
    cout << findMaximumSum((int*)mat, N, M);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG {
   
    // Driver Code
    public static void main(String[] args)
    {
        int[][] mat
            = { { 1, 2, 4 }, { 2, 0, 5 }, { 5, 6, 7 } };
        System.out.println(findMaximumSum(mat));
    }
 
    // Function to find the maximum sum of
    // the given matrix after replacing 0s
    // with any element
    public static int findMaximumSum(int[][] mat)
    {
        int N = mat.length;
        int M = mat[0].length;
 
        // Traverse the given matrix from
        // the end
        for (int i = N - 2; i > 0; i--) {
            for (int j = M - 2; j > 0; j--) {
 
                // If  the element is 0
                if (mat[i][j] == 0) {
 
                    // Replace the 0's
                    mat[i][j] = Math.min(mat[i][j + 1],
                                         mat[i + 1][j]);
                }
            }
        }
 
        // Stores the sum of matrix elements
        int sum = 0;
 
        // Traverse the matrix mat[][]
        for (int i = 0; i < N; i++) {
            for (int j = 0; j < M; j++) {
 
                // Updating the sum
                sum += mat[i][j];
 
                // Checking if not sorted
                if ((i + 1 < N && mat[i][j] > mat[i + 1][j])
                    || (j + 1 < M
                        && mat[i][j] > mat[i][j + 1]))
                    return -1;
            }
        }
 
        // Return the maximum value of the sum
        return sum;
    }
}
 
// This code is contributed by Kdheeraj.


Python3




# python program for the above approach
 
# Function to find the maximum sum of
#  the given matrix after replacing 0s
#  with any element
def findMaximumSum(mat, n, m):
   
    # Traverse the given matrix from
    # the end
    for i in range(n-2, 0, -1):
        for j in range(m-2, 0, -1):
           
            # If  the element is 0
            if (mat[i][j] == 0):
 
                # Replace the 0s
                mat[i][j] = min(mat[i][(j + 1)], mat[(i + 1)][j])
 
    # Stores the sum of matrix elements
    sum = 0
 
    # Traverse the matrix mat[][]
    for i in range(0, n):
        for j in range(0, m):
           
            # Updating the sum
            sum += mat[i][j]
             
            # Checking if not sorted
            if ((i + 1 < n and mat[i][j] > mat[(i + 1)][j]) or (j + 1 < m and mat[i][j] > mat[i][(j + 1)])):
                return -1
 
    # Return the maximum value of the sum
    return sum
 
# driver code
N = 3
M = 3
mat = [[1, 2, 4], [2, 0, 5], [5, 6, 7]]
print(findMaximumSum(mat, N, M))
 
# This code is contributed by amreshkumar3


C#




// C# program for the above approach
using System;
class GFG
{
   
    // Function to find the maximum sum of
    // the given matrix after replacing 0s
    // with any element
    static int findMaximumSum(int[, ] mat, int n, int m)
    {
       
        // Traverse the given matrix from
        // the end
        for (int i = n - 2; i > 0; i--) {
            for (int j = m - 2; j > 0; j--) {
 
                // If  the element is 0
                if (mat[i, j] == 0) {
 
                    // Replace the 0s
                    mat[i, j] = Math.Min(mat[i, (j + 1)],
                                         mat[(i + 1), j]);
                }
            }
        }
 
        // Stores the sum of matrix elements
        int sum = 0;
 
        // Traverse the matrix mat[][]
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
 
                // Updating the sum
                sum += mat[i, j];
 
                // Checking if not sorted
                if ((i + 1 < n
                     && mat[i, j] > mat[(i + 1), j])
                    || (j + 1 < m
                        && mat[i, j] > mat[i, (j + 1)])) {
                    return -1;
                }
            }
        }
 
        // Return the maximum value of the sum
        return sum;
    }
 
    // Driver Code
    public static void Main()
    {
        int N = 3, M = 3;
        int[, ] mat
            = { { 1, 2, 4 }, { 2, 0, 5 }, { 5, 6, 7 } };
        Console.WriteLine(findMaximumSum(mat, N, M));
    }
}
 
// This code is contributed by ukasp.


Javascript




<script>
       // JavaScript Program to implement
       // the above approach
 
       // Function to find the maximum sum of
       // the given matrix after replacing 0s
       // with any element
       function findMaximumSum(mat, n, m)
       {
        
           // Traverse the given matrix from
           // the end
           for (let i = n - 2; i > 0; i--) {
               for (let j = m - 2; j > 0; j--) {
 
                   // If  the element is 0
                   if (mat[i][j] == 0) {
 
                       // Replace the 0s
                       mat[i][j]
                           = Math.min(mat[i][j + 1],
                               mat[i + 1][j]);
                   }
               }
           }
 
           // Stores the sum of matrix elements
           let sum = 0;
 
           // Traverse the matrix mat[][]
           for (let i = 0; i < n; i++) {
               for (let j = 0; j < m; j++) {
 
                   // Updating the sum
                   sum += mat[i][j];
 
                   // Checking if not sorted
                   if ((i + 1 < n
                       && mat[i][j]
                       > mat[i + 1][j])
                       || (j + 1 < m
                           && mat[i][j]
                           > mat[i][(j + 1)])) {
                       return -1;
                   }
               }
           }
 
           // Return the maximum value of the sum
           return sum;
       }
 
       // Driver Code
 
       let N = 3, M = 3;
       let mat
           = [[1, 2, 4], [2, 0, 5], [5, 6, 7]];
       document.write(findMaximumSum(mat, N, M));
 
    // This code is contributed by Potta Lokesh
   </script>


 
 

Output: 

37

 

 

Time Complexity: O(N*M)
Auxiliary Space: O(1)

 

Last Updated :
18 Oct, 2021
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments