Saturday, November 2, 2024
Google search engine
HomeData Modelling & AIMaximize average of the ratios of N pairs by M increments

Maximize average of the ratios of N pairs by M increments

Given an array arr[] consisting of N pairs and a positive integer M, the task is to maximize the average of the ratio of the pairs by incrementing the first and second elements of any pair by 1 exactly M times.

Examples:

Input: arr[] = {{1, 2}, {3, 5}, {2, 2}}, M = 2
Output: 0.783333
Explanation:
Below are the operations performed:
Operation 1: Increment the first and second element of pair {1, 2} by 1. Now, the array modifies to {{2, 3}, {3, 5}, {2, 2}}.
Operation 2: Increment the first and second element of pair {2, 3} by 1. Now, the array modifies to {{3, 4}, {3, 5}, {2, 2}}.
After the above operations, the average of the ratio of the pairs is ((3/4) + (3/5) + (2/2))/3 = 0.7833 which is the maximum possible.

Input: arr[] = {{2, 5}, {3, 5}}, M = 3
Output: 0.619048

Approach: The given problem can be solved by storing the increase incurred in the ratio by applying operation on the pairs using Max-heap and then keep popping the values M times from the heap and add to the overall sum. Follow the steps below to solve the problem:

  • Initialize a priority queue, say PQ of pairs to store the corresponding change in average and the index of the pair if one operation is applied on it.
  • Initialize a variable, say sum as 0 to store the maximum average of the ratio of the pairs.
  • Traverse the given array of pairs arr[] and find the increase in the ratio after adding 1 to both the values of the pair and push the value to priority queue PQ. Also, add the ratio of the ith pair to the variable sum.
  • Iterate until the value of M is positive and perform the following steps:
  • After completing the above steps, print the value of the sum divided by N as the result.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the change in the
// ratio in pair after applying operation
double change(int pass, int total)
{
    double currentPassRatio, newPassRatio;
    double increase;
 
    // Stores the current ratio
    currentPassRatio = ((double)pass)
                       / total;
 
    // Stores the new ratio
    newPassRatio = ((double)(pass + 1))
                   / (total + 1);
 
    // Stores the increase in ratio
    increase = newPassRatio
               - currentPassRatio;
 
    // Returns the change
    return increase;
}
 
// Function to find the maximum
// average of the ratio of the
// pairs by applying M increments
double maximumAverage(
    vector<vector<int> > v, int M,
    int N)
{
    // Stores the required result
    double sum = 0;
 
    double increase, average;
 
    // Declare a priority queue
    // for storing the increments
    priority_queue<pair<double, int> > pq;
    for (int i = 0; i < N; i++) {
 
        // Store the increase in the ratio
        // after applying one operation
        increase = change(v[i][0], v[i][1]);
 
        // Push the increased value and
        // index value in priority queue
        pq.push({ increase, i });
 
        // Store the ratio
        average = v[i][0] * 1.0 / v[i][1];
 
        // Update the value of sum
        sum += average;
    }
 
    // Iterate while M > 0
    while (M > 0) {
 
        // Add the maximum change
        // to the sum
        sum += pq.top().first;
 
        int i = pq.top().second;
 
        // Remove the element from
        // the priority queue
        pq.pop();
 
        // Increase the pairs elements
        // by 1 on which operation
        // is applied
        v[i][0] += 1;
        v[i][1] += 1;
 
        // Push the updated change of
        // the pair in priority queue
        pq.push({ change(v[i][0], v[i][1]), i });
 
        // Decrease the operation count
        M--;
    }
 
    // Update the value of the sum by
    // dividing it by N
    double ans = sum / N;
 
    // Return the result
    return ans;
}
 
// Driver Code
int main()
{
    vector<vector<int> > V
        = { { 1, 2 }, { 3, 5 }, { 2, 2 } };
    int M = 2;
    int N = V.size();
    cout << maximumAverage(V, M, N);
 
    return 0;
}


Java




import java.util.*;
 
// Comparer for the SortedList
class DescendingComparer<T extends Comparable<T> >
  implements Comparator<T> {
  public int compare(T x, T y)
  {
    if (x == null) {
      return -1;
    }
    if (y == null) {
      return 1;
    }
 
    return x.compareTo(y);
  }
}
 
class GFG {
  // Function to find the change in the
  // ratio in pair after applying operation
  static double change(int pass, int total)
  {
    double currentPassRatio, newPassRatio;
    double increase;
 
    // Stores the current ratio
    currentPassRatio = ((double)pass) / total;
 
    // Stores the new ratio
    newPassRatio = ((double)(pass + 1)) / (total + 1);
 
    // Stores the increase in ratio
    increase = newPassRatio - currentPassRatio;
 
    // Returns the change
    return increase;
  }
 
  // Function to find the maximum
  // average of the ratio of the
  // pairs by applying M increments
  static double maximumAverage(List<List<Integer> > v,
                               int M, int N)
  {
    // Stores the required result
    double sum = 0;
 
    double increase, average;
 
    // Declare a priority queue
    // for storing the increments
    PriorityQueue<Double> pq = new PriorityQueue<>(
      new DescendingComparer<Double>());
    for (int i = 0; i < N; i++) {
      // Store the increase in the ratio
      // after applying one operation
      increase
        = change(v.get(i).get(0), v.get(i).get(1));
 
      // Push the increased value and
      // index value in priority queue
      pq.add(increase);
 
      // Store the ratio
      average = v.get(i).get(0) * 1.0
        / (1.0 * v.get(i).get(1));
 
      // Update the value of sum
      sum += average;
    }
 
    // Iterate while M > 0
    while (M > 0) {
      // Add the maximum change
      // to the sum
      // Remove the element from
      // the priority queue
      sum += pq.poll();
 
      // Decrease the operation count
      M--;
    }
 
    // Update the value of the sum by
    // dividing it by N
    double ans = sum / (1.0 * N);
 
    // Return the result
    return ans;
  }
 
  // Main function
  public static void main(String[] args)
  {
    List<List<Integer> > V = new ArrayList<>();
    V.add(Arrays.asList(1, 2));
    V.add(Arrays.asList(3, 5));
    V.add(Arrays.asList(2, 2));
    int M = 2;
    int N = V.size();
    System.out.println(maximumAverage(V, M, N));
  }
}
 
// This code is contributed by phasing17.


Python3




# python program for the above approach
 
# Function to find the change in the
# ratio in pair after applying operation
def change(pas, total):
 
    # Stores the current ratio
    currentPassRatio = pas/ total
 
    # Stores the new ratio
    newPassRatio = (pas + 1) / (total + 1)
 
    # Stores the increase in ratio
    increase = newPassRatio - currentPassRatio
 
    # Returns the change
    return increase
 
# Function to find the maximum
# average of the ratio of the
# pairs by applying M increments
def maximumAverage(v, M, N):
   
    # Stores the required result
    sum = 0
 
    increase, average = 0, 0
 
    # Declare a priority queue
    # for storing the increments
    pq = []
    for i in range(N):
        # Store the increase in the ratio
        # after applying one operation
        increase = change(v[i][0], v[i][1])
 
        # Push the increased value and
        # index value in priority queue
        pq.append([increase, i ])
 
        # Store the ratio
        average = v[i][0] * 1.0 / v[i][1]
 
        # Update the value of sum
        sum += average
    pq = sorted(pq)
 
    # Iterate while M > 0
    while (M > 0):
 
        # Add the maximum change
        # to the sum
        sum += pq[-1][0]
 
        i = pq[-1][1]
 
        # Remove the element from
        # the priority queue
        del pq[-1]
 
        # Increase the pairs elements
        # by 1 on which operation
        # is applied
        v[i][0] += 1
        v[i][1] += 1
 
        # Push the updated change of
        # the pair in priority queue
        pq.append([change(v[i][0], v[i][1]), i])
 
        # Decrease the operation count
        M -= 1
        pq = sorted(pq)
 
    # Update the value of the sum by
    # dividing it by N
    ans = sum / N
 
    # Return the result
    return ans
 
# Driver Code
if __name__ == '__main__':
    V =  [[1, 2],  [3, 5],  [2, 2]]
    M = 2
    N = len(V)
    print (round(maximumAverage(V, M, N),6))
 
    # This code is contributed by mohit kumar 29.


C#




// C# Program to find maximum average of the ratio of the pairs
// by applying M increments
using System;
using System.Collections.Generic;
using System.Linq;
 
// Comparer for the SortedList
class DescendingComparer<T> : IComparer<T> {
  public int Compare(T x, T y)
  {
    if (x == null)
      return -1;
    if (y == null)
      return 1;
    return Comparer<T>.Default.Compare(y, x);
  }
}
 
class Program {
  // Function to find the change in the
  // ratio in pair after applying operation
  static double Change(int pass, int total)
  {
    double currentPassRatio, newPassRatio;
    double increase;
 
    // Stores the current ratio
    currentPassRatio = ((double)pass) / total;
 
    // Stores the new ratio
    newPassRatio = ((double)(pass + 1)) / (total + 1);
 
    // Stores the increase in ratio
    increase = newPassRatio - currentPassRatio;
 
    // Returns the change
    return increase;
  }
 
  // Function to find the maximum
  // average of the ratio of the
  // pairs by applying M increments
  static double MaximumAverage(List<List<int> > v, int M,
                               int N)
  {
    // Stores the required result
    double sum = 0;
 
    double increase, average;
 
    // Declare a priority queue
    // for storing the increments
    var pq = new SortedList<double, int>(
      new DescendingComparer<double>());
    for (int i = 0; i < N; i++) {
      // Store the increase in the ratio
      // after applying one operation
      increase = Change(v[i][0], v[i][1]);
 
      // Push the increased value and
      // index value in priority queue
      pq.Add(increase, i);
 
      // Store the ratio
      average = v[i][0] * 1.0 / v[i][1];
 
      // Update the value of sum
      sum += average;
    }
 
    // Iterate while M > 0
    while (M > 0) {
      // Add the maximum change
      // to the sum
      sum += pq.First().Key;
 
      int i = pq.First().Value;
 
      // Remove the element from
      // the priority queue
      pq.RemoveAt(0);
 
      // Increase the pairs elements
      // by 1 on which operation
      // is applied
      v[i][0] += 1;
      v[i][1] += 1;
 
      // Push the updated change of
      // the pair in priority queue
      pq.Add(Change(v[i][0], v[i][1]), i);
 
      // Decrease the operation count
      M--;
    }
 
    // Update the value of the sum by
    // dividing it by N
    double ans = sum / N;
 
    // Return the result
    return ans;
  }
 
  // Main function
  static void Main(string[] args)
  {
    var V
      = new List<List<int> >{ new List<int>{ 1, 2 },
                             new List<int>{ 3, 5 },
                             new List<int>{ 2, 2 } };
    int M = 2;
    int N = V.Count;
    Console.WriteLine(MaximumAverage(V, M, N));
  }
}
 
// This code is contributed by phasing17.


Javascript




<script>
 
// JavaScript program for the above approach
 
// Function to find the change in the
// ratio in pair after applying operation
function change(pass,total)
{
    let currentPassRatio, newPassRatio;
    let increase;
     
    // Stores the current ratio
    currentPassRatio = (pass)
                       / total;
  
    // Stores the new ratio
    newPassRatio = ((pass + 1))
                   / (total + 1);
  
    // Stores the increase in ratio
    increase = newPassRatio
               - currentPassRatio;
  
    // Returns the change
    return increase;
}
 
// Function to find the maximum
// average of the ratio of the
// pairs by applying M increments
function maximumAverage(v,M,N)
{
    // Stores the required result
    let sum = 0;
  
    let increase, average;
  
    // Declare a priority queue
    // for storing the increments
    let pq=[];
    for (let i = 0; i < N; i++) {
  
        // Store the increase in the ratio
        // after applying one operation
        increase = change(v[i][0], v[i][1]);
  
        // Push the increased value and
        // index value in priority queue
        pq.push([ increase, i ]);
  
        // Store the ratio
        average = v[i][0] * 1.0 / v[i][1];
  
        // Update the value of sum
        sum += average;
    }
      
    pq.sort(function(a,b){return a[0]-b[0]});
    // Iterate while M > 0
    while (M > 0) {
  
        // Add the maximum change
        // to the sum
        sum += pq[pq.length-1][0];
  
        let i = pq[pq.length-1][1];
  
        // Remove the element from
        // the priority queue
        pq.pop();
  
        // Increase the pairs elements
        // by 1 on which operation
        // is applied
        v[i][0] += 1;
        v[i][1] += 1;
  
        // Push the updated change of
        // the pair in priority queue
        pq.push([ change(v[i][0], v[i][1]), i ]);
  
        // Decrease the operation count
        M--;
        pq.sort(function(a,b){return a[0]-b[0]});
    }
  
    // Update the value of the sum by
    // dividing it by N
    let ans = sum / N;
  
    // Return the result
    return ans;
}
 
// Driver Code
let V=[[ 1, 2 ], [ 3, 5 ], [ 2, 2 ] ];
let M = 2;
let N=V.length;
document.write( maximumAverage(V, M, N).toFixed(6));
 
// This code is contributed by patel2127
 
</script>


Output: 

0.783333

 

Time Complexity: O(M*log N)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
06 Feb, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments