Monday, November 18, 2024
Google search engine
HomeData Modelling & AIMake all Array elements equal by replacing consecutive occurrences of a number...

Make all Array elements equal by replacing consecutive occurrences of a number repeatedly

Given an array arr[] of size N, the task is to find the minimum number of operations required to make all the array elements equal by following operation:

  1. Pick any number between 1 to N.
  2. Choose an element from the array,
  3. Replace all the consecutive equal elements with the picked number.

Example:

Input: arr[] = {1, 2, 5, 2, 1}, N = 5
Output: 2
Explanation: Following are the operations required to make all the elements in arr[] equal.
{1, 2, 2, 2, 1}, pick 2 and replace it with all consecutive 5s.
{1, 1, 1, 1, 1}, pick 1 and replace it with all consecutive 2s.
Therefore, Number of operations required = 2, which is minimum possible. 

Input: arr[] = {4, 4, 7, 4, 7, 7, 3, 3}, N = 7
Output: 3

 

Approach: This problem can be solved by using Dynamic Programming. The idea is to think of the order of vanishing elements within subinterval to the extreme. Within subinterval [l, r] there is the first time when the element at position r will vanish. And, at that point in time, there will be subinterval [i, r] of vanished elements. Those [i, r] were deleted in the fewest steps. Otherwise, we can reduce the number of steps. Also, in the previous step, the element at position r was existing. So, there are two possible cases:

  • Segment [i, r-1] was deleted already ⇢ means that a single element is deleted at position r, but this means we can first delete [l, r-1] segment instead, and then delete the single element at position r.
  • Segment [i+1, r-1] was deleted already ⇢ means that two elements are deleted at once: at positions r, and i. They have to be same elements.

Remove all consecutive duplicates in the initial array. 
Using the above idea, construct a 2D dp array where, dp[l][r] is equal to, number of steps needed to delete all elements within the range [l, r]. Then, the answer is (dp[0][n-1] – 1) ( in 0-based indexing), which is nothing but, deleting whole array minus one step.

  • The base case for our dp[][] is dp[i][i] = 1. (It take one step to delete an array of size 1)
  • for l < r, dp[l][r] will be initially set to dp[l][r-1] + 1.
  • for each element at position i with same value as element at position r, update dp[l][r] if dp[l][i-1] + dp[i, r] is less than current value of dp[l][r].

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum number of
// operations required to make all the
// array elements equal
int minOperations(vector<int> arr, int N)
{
    vector<int> p(N + 1, -1);
    int j = 0;
 
    for (int i = 1; i < N; ++i) {
        if (arr[i] != arr[j]) {
            ++j;
            arr[j] = arr[i];
        }
    }
 
    N = j + 1;
    arr.resize(N);
 
    vector<vector<int> > dp(N, vector<int>(N));
    vector<int> b(N, -1);
 
    for (int j = 0; j < N; ++j) {
        dp[j][j] = 1;
 
        b[j] = p[arr[j]];
        p[arr[j]] = j;
 
        for (int i = j - 1; i >= 0; --i) {
            int d = dp[i][j - 1] + 1;
 
            for (int k = b[j]; k > i; k = b[k]) {
                d = min(d, dp[i][k - 1] + dp[k][j]);
            }
            if (arr[i] == arr[j]) {
                d = min(d, dp[i + 1][j]);
            }
            dp[i][j] = d;
        }
    }
    // Return the answer
    return dp[0][N - 1] - 1;
}
 
// Driver Code
int main()
{
    vector<int> arr = { 1, 2, 5, 2, 1 };
    int N = arr.size();
 
    cout << minOperations(arr, N);
 
    return 0;
}


Java




// Java code for the above approach
import java.util.*;
 
class GFG
{
   
    // Function to find the minimum number of
    // operations required to make all the
    // array elements equal
    static int minOperations(int[] arr, int N)
    {
        int p[] = new int[N + 1];
        Arrays.fill(p, -1);
        int j = 0;
 
        for (int i = 1; i < N; ++i) {
            if (arr[i] != arr[j]) {
                ++j;
                arr[j] = arr[i];
            }
        }
 
        N = j + 1;
        int[][] dp = new int[N][N];
        int[] b = new int[N];
        Arrays.fill(b, -1);
 
        for (j = 0; j < N; ++j) {
            dp[j][j] = 1;
 
            b[j] = p[arr[j]];
            p[arr[j]] = j;
 
            for (int i = j - 1; i >= 0; --i) {
                int d = dp[i][j - 1] + 1;
 
                for (int k = b[j]; k > i; k = b[k]) {
                    d = Math.min(d,
                                 dp[i][k - 1] + dp[k][j]);
                }
                if (arr[i] == arr[j]) {
                    d = Math.min(d, dp[i + 1][j]);
                }
                dp[i][j] = d;
            }
        }
       
        // Return the answer
        return dp[0][N - 1] - 1;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int[] arr = { 1, 2, 5, 2, 1 };
        int N = arr.length;
 
        System.out.println(minOperations(arr, N));
    }
}
 
// This code is contributed by Potta Lokesh


Python3




# python program for the above approach
 
# Function to find the minimum number of
# operations required to make all the
# array elements equal
def minOperations(arr, N):
 
    p = [-1 for _ in range(N + 1)]
    j = 0
 
    for i in range(1, N):
        if (arr[i] != arr[j]):
            j += 1
            arr[j] = arr[i]
 
    N = j + 1
    arr = arr[:N]
 
    dp = [[0 for _ in range(N)] for _ in range(N)]
    b = [-1 for _ in range(N)]
 
    for j in range(0, N):
        dp[j][j] = 1
 
        b[j] = p[arr[j]]
        p[arr[j]] = j
 
        for i in range(j-1, -1, -1):
            d = dp[i][j - 1] + 1
 
            k = b[j]
            while k > i:
                d = min(d, dp[i][k - 1] + dp[k][j])
                k = b[k]
 
            if (arr[i] == arr[j]):
                d = min(d, dp[i + 1][j])
 
            dp[i][j] = d
 
        # Return the answer
    return dp[0][N - 1] - 1
 
# Driver Code
if __name__ == "__main__":
 
    arr = [1, 2, 5, 2, 1]
    N = len(arr)
 
    print(minOperations(arr, N))
 
    # This code is contributed by rakeshsahni


C#




// C# code for the above approach
using System;
using System.Collections;
class GFG
{
 
    // Function to find the minimum number of
    // operations required to make all the
    // array elements equal
    static int minOperations(int[] arr, int N)
    {
        int[] p = new int[N + 1];
        Array.Fill(p, -1);
        int j = 0;
 
        for (int i = 1; i < N; ++i)
        {
            if (arr[i] != arr[j])
            {
                ++j;
                arr[j] = arr[i];
            }
        }
 
        N = j + 1;
        int[,] dp = new int[N, N];
        int[] b = new int[N];
        Array.Fill(b, -1);
 
        for (j = 0; j < N; ++j)
        {
            dp[j, j] = 1;
 
            b[j] = p[arr[j]];
            p[arr[j]] = j;
 
            for (int i = j - 1; i >= 0; --i)
            {
                int d = dp[i, j - 1] + 1;
 
                for (int k = b[j]; k > i; k = b[k])
                {
                    d = Math.Min(d, dp[i, k - 1] + dp[k, j]);
                }
                if (arr[i] == arr[j])
                {
                    d = Math.Min(d, dp[i + 1, j]);
                }
                dp[i, j] = d;
            }
        }
 
        // Return the answer
        return dp[0, N - 1] - 1;
    }
 
    // Driver Code
    public static void Main()
    {
        int[] arr = { 1, 2, 5, 2, 1 };
        int N = arr.Length;
 
        Console.Write(minOperations(arr, N));
    }
}
 
// This code is contributed by gfgking


Javascript




<script>
// Javascript program for the above approach
 
 
// Function to find the minimum number of
// operations required to make all the
// array elements equal
function minOperations(arr, N) {
  let p = new Array(N + 1).fill(-1);
  let j = 0;
 
  for (let i = 1; i < N; ++i) {
    if (arr[i] != arr[j]) {
      ++j;
      arr[j] = arr[i];
    }
  }
 
  N = j + 1;
  arr.slice(0, N);
 
  let dp = new Array(N).fill(0).map(() => new Array(N))
  let b = new Array(N).fill(-1);
 
  for (let j = 0; j < N; ++j) {
    dp[j][j] = 1;
 
    b[j] = p[arr[j]];
    p[arr[j]] = j;
 
    for (let i = j - 1; i >= 0; --i) {
      let d = dp[i][j - 1] + 1;
 
      for (let k = b[j]; k > i; k = b[k]) {
        d = Math.min(d, dp[i][k - 1] + dp[k][j]);
      }
      if (arr[i] == arr[j]) {
        d = Math.min(d, dp[i + 1][j]);
      }
      dp[i][j] = d;
    }
  }
  // Return the answer
  return dp[0][N - 1] - 1;
}
 
// Driver Code
 
let arr = [1, 2, 5, 2, 1];
let N = arr.length;
 
document.write(minOperations(arr, N));
 
// This code is contributed by gfgking.
</script>


Output

2

Time Complexity: O(N3
Auxiliary Space: O(N2)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments