Sunday, November 17, 2024
Google search engine
HomeData Modelling & AIGenerate a pair of integers from a range whose LCM also...

Generate a pair of integers from a range [L, R] whose LCM also lies within the range

Given two integers L and R, the task is to find a pair of integers from the range [L, R] having LCM within the range [L, R] as well. If no such pair can be obtained, then print -1. If multiple pairs exist, print any one of them.

Examples:

Input: L = 13, R = 69
Output: X =13, Y = 26
Explanation: LCM(x, y) = 26 which satisfies the conditions L ? x < y ? R and L <= LCM(x, y) <= R

Input: L = 1, R = 665
Output: X = 1, Y = 2

Naive Approach: The simplest approach is to generate every pair between L and R and compute their LCM. Print a pair having LCM between the range L and R. If no pair is found to have LCM in the given range, print “-1”.

Time Complexity: O(N)
Auxiliary Space: O(1)

Efficient Approach: The problem can be solved by using the Greedy technique based on the observation that LCM(x, y) is at least equal to 2*x which is LCM of (x, 2*x). Below are the steps to implement the approach:

  1. Select the value of x as L and compute the value of y as 2*x
  2. Check if y is less than R or not.
  3. If y is less than R then print the pair (x, y)
  4. Else print “-1”

Below is the implementation of the above approach:

C++




// C++ implementation of the above approach
#include <iostream>
using namespace std;
 
void lcmpair(int l, int r)
{
    int x, y;
    x = l;
    y = 2 * l;
 
    // Checking if any pair is possible
    // or not in range(l, r)
    if (y > r) {
 
        // If not possible print(-1)
        cout << "-1\n";
    }
    else {
 
        // Print LCM pair
        cout << "X = " << x << " Y = "
             << y << "\n";
    }
}
 
// Driver code
int main()
{
    int l = 13, r = 69;
 
    // Function call
    lcmpair(l, r);
    return 0;
}


Java




// Java implementation of the above approach
import java.util.*;
 
class GFG{
 
static void lcmpair(int l, int r)
{
    int x, y;
    x = l;
    y = 2 * l;
 
    // Checking if any pair is possible
    // or not in range(l, r)
    if (y > r)
    {
         
        // If not possible print(-1)
        System.out.print("-1\n");
    }
    else
    {
         
        // Print LCM pair
        System.out.print("X = " + x +
                        " Y = " + y + "\n");
    }
}
 
// Driver code
public static void main(String[] args)
{
    int l = 13, r = 69;
 
    // Function call
    lcmpair(l, r);
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 implementation of the above approach
def lcmpair(l, r):
 
    x = l
    y = 2 * l
 
    # Checking if any pair is possible
    # or not in range(l, r)
    if(y > r):
 
        # If not possible print(-1)
        print(-1)
    else:
         
        # Print LCM pair
        print("X = {} Y = {}".format(x, y))
 
# Driver Code
l = 13
r = 69
 
# Function call
lcmpair(l, r)
 
# This code is contributed by Shivam Singh


C#




// C# implementation of the above approach
using System;
class GFG{
 
static void lcmpair(int l, int r)
{
    int x, y;
    x = l;
    y = 2 * l;
 
    // Checking if any pair is possible
    // or not in range(l, r)
    if (y > r)
    {       
        // If not possible print(-1)
        Console.Write("-1\n");
    }
    else
    {       
        // Print LCM pair
        Console.Write("X = " + x +
                      " Y = " + y + "\n");
    }
}
 
// Driver code
public static void Main(String[] args)
{
    int l = 13, r = 69;
 
    // Function call
    lcmpair(l, r);
}
}
 
// This code is contributed by shikhasingrajput


Javascript




<script>
// javascript implementation of the above approach
 
    function lcmpair(l , r) {
        var x, y;
        x = l;
        y = 2 * l;
 
        // Checking if any pair is possible
        // or not in range(l, r)
        if (y > r) {
 
            // If not possible print(-1)
            document.write("-1\n");
        } else {
 
            // Print LCM pair
            document.write("X = " + x + " Y = " + y + "\n");
        }
    }
 
    // Driver code
        var l = 13, r = 69;
 
        // Function call
        lcmpair(l, r);
 
// This code is contributed by aashish1995
</script>


Output: 

X = 13 Y = 26

Time Complexity: O(1)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments