Monday, November 18, 2024
Google search engine
HomeData Modelling & AIFind the total number of Subarrays of 0’s

Find the total number of Subarrays of 0’s

Given an array arr[] of length N of 0’s and 1’s, the task is to find the total number of subarrays of 0’s.

Examples:

Input: N = 4, arr[] = {0, 0, 1, 0}
Output: 4
Explanation: Following are the subarrays of length 1: {0}, {0}, {0} – 3 length 2: {0, 0} – 1. Total Subarrays: 3 + 1 = 4

Input: N = 4, arr[] = {0, 0, 0, 0}
Output: 10
Explanation: The following are the subarrays of 

  • length 1: {0}, {0}, {0}, {0} = 4
  • length 2: {0, 0}, {0, 0}, {0, 0} = 3
  • length 3: {0, 0, 0}, {0, 0, 0} = 2
  • length 4: {0, 0, 0, 0} = 1

Total Subarrays: 4 + 3 + 2 + 1 = 10

Approach: To solve the problem follow the below idea:

The concept is that if there are n consecutive 0s, then there are ((n+1) * (n))/2 total 0 subarrays.

Steps involved in the implementation of code: 

  • Maintain a variable for the response, initialize it with 0, and another variable for the counter, which keeps track of the number of continuous  0s.
  • Start a for loop and traverse through the array.
    • Count the number of contiguous zeros.
    • Including count*(count+1)/2 in the solution because count*(count+1)/2 subarrays can be produced using the count number of continuous zeros.
  • Add count*(count+1)/2 to the answer if the count is more than zero.
  • Return the answer.

Below is the code implementation of the above approach:

C++14




// C++ Implementation of approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to count the
// number of subarrays
long long no_of_subarrays(int N, int arr[])
{
    long long count = 0, answer = 0;
 
    // Loop through the array
    for (int i = 0; i < N; i++) {
 
        // If the element is 0,
        // increment the count
        if (arr[i] == 0) {
            count++;
        }
 
        // If the element is not 0,
        // calculate the number of
        // subarrays that can be formed
        // with the previous 0's
        else {
            answer += ((count * (count + 1)) / 2);
            count = 0;
        }
    }
 
    // Calculate the number of
    // subarrays that can be formed
    // with any remaining 0's
    answer += ((count * (count + 1)) / 2);
    return answer;
}
 
// Driver code
int main()
{
    int arr[] = { 0, 0, 1, 0 };
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Function call
    long long result = no_of_subarrays(N, arr);
    cout << result << endl;
    return 0;
}


Java




// Java Implementation of approach
import java.util.*;
 
public class GFG {
 
    // Function to count the
    // number of subarrays
    static long no_of_subarrays(int N, int[] arr)
    {
        long count = 0, answer = 0;
 
        // Loop through the array
        for (int i = 0; i < N; i++) {
 
            // If the element is 0,
            // increment the count
            if (arr[i] == 0) {
                count++;
            }
 
            // If the element is not 0,
            // calculate the number of
            // subarrays that can be formed
            // with the previous 0's
            else {
                answer += ((count * (count + 1)) / 2);
                count = 0;
            }
        }
 
        // Calculate the number of
        // subarrays that can be formed
        // with any remaining 0's
        answer += ((count * (count + 1)) / 2);
        return answer;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int[] arr = { 0, 0, 1, 0 };
        int N = arr.length;
 
        // Function call
        long result = no_of_subarrays(N, arr);
        System.out.println(result);
    }
}


Python3




def no_of_subarrays(N, arr):
    count = 0
    answer = 0
 
    # Loop through the array
    for i in range(N):
 
        # If the element is 0,
        # increment the count
        if arr[i] == 0:
            count += 1
 
        # If the element is not 0,
        # calculate the number of
        # subarrays that can be formed
        # with the previous 0's
        else:
            answer += (count * (count + 1)) // 2
            count = 0
 
    # Calculate the number of
    # subarrays that can be formed
    # with any remaining 0's
    answer += (count * (count + 1)) // 2
    return answer
 
# Driver code
arr = [0, 0, 1, 0]
N = len(arr)
 
# Function call
result = no_of_subarrays(N, arr)
print(result)
#This code is contributed bY Akash Jha


C#




// C# code implementation of the above approach
 
using System;
 
public class GFG {
 
    // Function to count the number of subarrays
    static long no_of_subarrays(int N, int[] arr)
    {
        long count = 0, answer = 0;
 
        // Loop through the array
        for (int i = 0; i < N; i++) {
 
            // If the element is 0, increment the count
            if (arr[i] == 0) {
                count++;
            }
 
            // If the element is not 0, calculate the number
            // of subarrays that can be formed with the
            // previous 0's
            else {
                answer += ((count * (count + 1)) / 2);
                count = 0;
            }
        }
 
        // Calculate the number of subarrays that can be
        // formed with any remaining 0's
        answer += ((count * (count + 1)) / 2);
        return answer;
    }
 
    static public void Main()
    {
 
        // Code
        int[] arr = { 0, 0, 1, 0 };
        int N = arr.Length;
 
        // Function call
        long result = no_of_subarrays(N, arr);
        Console.WriteLine(result);
    }
}
 
// This code is contributed by karthik.


Javascript




function no_of_subarrays(N, arr) {
 
    let count = 0;
    let answer = 0;
 
    // Loop through the array
    for (let i = 0; i < N; i++) {
 
        // If the element is 0,
        // increment the count
        if (arr[i] == 0) {
            count++;
 
        }
 
        // If the element is not 0,
        // calculate the number of
        // subarrays that can be formed
        // with the previous 0's
        else {
 
            answer += ((count * (count + 1)) / 2);
            count = 0;
 
        }
 
    }
 
    // Calculate the number of
    // subarrays that can be formed
    // with any remaining 0's
    answer += ((count * (count + 1)) / 2);
    return answer;
 
}
 
// Driver code
const arr = [0, 0, 1, 0];
const N = arr.length;
 
// Function call
const result = no_of_subarrays(N, arr);
console.log(result);
 
// This code is contributed by Akash Jha


Output

4










Time Complexity: O(N).
Auxiliary Space: O(1).

Approach 2: Sliding Window

Implementation :

C++




#include <iostream>
#include <vector>
 
int GFG(std::vector<int>& arr) {
    int count = 1;
    int start = 2;
    int end = 0;
    int n = arr.size();
     
    while (end < n) {
        if (arr[end] == 0) {
            count++;
        }
        else {
            start = end + 1;
        }
        end++;
    }
     
    return count;
}
 
int main() {
    std::vector<int> arr = {0, 0, 0, 0, 0};
    int result = GFG(arr);
    std::cout << "Total number of subarrays of 0's: " << result << std::endl;
 
    return 0;
}


Java




import java.util.ArrayList;
import java.util.List;
 
public class Main {
    // Function to count the total number of subarrays of 0's
    public static int GFG(List<Integer> arr) {
        // Initialize count to 1
        int count = 1;
        // Initialize start to 2
        int start = 2;
        // Initialize end to 0
        int end = 0;
        // Get the size of the array
        int n = arr.size();
 
        // Iterate through the array
        while (end < n) {
            // If the current element is 0, increment count
            if (arr.get(end) == 0) {
                count++;
            }
            // If the current element is not 0, update start
            else {
                start = end + 1;
            }
            // Move to the next element
            end++;
        }
 
        // Return the total count
        return count;
    }
 
    public static void main(String[] args) {
        // Create an array and initialize it with 0's
        List<Integer> arr = new ArrayList<>();
        arr.add(0);
        arr.add(0);
        arr.add(0);
        arr.add(0);
        arr.add(0);
 
        // Call the GFG function to count the subarrays of 0's
        int result = GFG(arr);
 
        // Print the result
        System.out.println("Total number of subarrays of 0's: " + result);
    }
}


Python




# Function to count the total number of subarrays of 0's
def GFG(arr):
   
      # Initialize count to 1
    count = 1
     
    # Initialize start to 2
    start = 2
     
    # Initialize end to 0
    end = 0
     
    # Get the size of the array
    n = len(arr)
 
    # Iterate through the array
    while end < n:
       
          # If the current element is 0, increment count
        if arr[end] == 0:
            count += 1
             
        # If the current element is not 0, update start
        else:
            start = end + 1
             
        # Move to the next element
        end += 1
 
    # Return the total count
    return count
 
# Create an array and initialize it with 0's
arr = [0, 0, 0, 0, 0]
 
# Call the GFG function to count the subarrays of 0's
result = GFG(arr)
 
#  Print the result
print("Total number of subarrays of 0's:", result)


C#




using System;
using System.Collections.Generic;
 
public class Program
{
    // Function to count the total number of subarrays of 0's
    public static int GFG(List<int> arr)
    {
        // Initialize count to 1
        int count = 1;
        // Initialize end to 0
        int end = 0;
        // Get the size of the list
        int n = arr.Count;
 
        // Iterate through the list
        while (end < n)
        {
            // If the current element is 0, increment count
            if (arr[end] == 0)
            {
                count++;
            }
            end++;
        }
 
        // Return the total count
        return count;
    }
 
    public static void Main(string[] args)
    {
        // Create a list and initialize it with 0's
        List<int> arr = new List<int> { 0, 0, 0, 0, 0 };
 
        // Call the GFG function to count the subarrays of 0's
        int result = GFG(arr);
 
        // Print the result
        Console.WriteLine("Total number of subarrays of 0's: " + result);
    }
}


Javascript




// Function to count the total number of subarrays of 0's
function GFG(arr) {
 
    // Initialize count to 1
    let count = 1;
     
    // Initialize start to 2
    let start = 2;
     
    // Initialize end to 0
    let end = 0;
     
    // Get the size of the array
    const n = arr.length;
     
    // Iterate through the array
    while (end < n) {
         
        // If the current element is 0, increment count
        if (arr[end] === 0) {
            count++;
        } else {
            start = end + 1; // If the current element is not 0, update start
        }
        end++;
    }
    // Return the total count
    return count;
}
 
function main() {
    const arr = [0, 0, 0, 0, 0];
    const result = GFG(arr);
    console.log(`Total number of subarrays of 0's: ${result}`);
}
main();


Output

Total number of subarrays of 0's: 6
Last Updated :
13 Sep, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Take a part in the ongoing discussion

RELATED ARTICLES

Most Popular

Recent Comments