Sunday, November 17, 2024
Google search engine
HomeData Modelling & AIFind the number N, where (N+X) divisible by Y and (N-Y) divisible...

Find the number N, where (N+X) divisible by Y and (N-Y) divisible by X

Given two numbers X and Y. the task is to find the number N (N ? 10^18) which satisfies these two conditions:

  • (N + X) is divisible by Y
  • (N – Y) is divisible by X

Examples:

Input: X = 18, Y = 42
Output:780

Input: X = 100, Y = 200
Output: 300

Naive Approach/Brute Force Approach:

When constraints are small, then we can use this approach:

In this code, we define a function FindN that takes two integers X and Y as input and returns an integer N that satisfies the two conditions given in the problem. Inside the function, we use a while loop to iterate through all possible values of N until we find a solution or until N exceeds the upper limit of 10^18. For each value of N, we check if both conditions are satisfied using the modulo operator %. If both conditions are satisfied, we return the value of N. If no solution is found, we return -1.

In the main function, we define the values of X and Y and call the FindN function to compute the value of N. The computed value of N is then printed to the console.

Below is the implementation of the above approach:

C++




#include <iostream>
using namespace std;
#define int long long int
 
// Function to find N
int FindN(int x, int y)
{
    int N = max(x, y);
 
    // Loop through all possible values of N
    while (
        N <= 1000000000000000000) { // loop until N <= 10^18
        if ((N + x) % y == 0
            && (N - y) % x
                   == 0) { // check if both conditions are
                           // satisfied
            return N; // return the value of N if a solution
                      // is found
        }
        N++; // increment N
    }
 
    return -1; // return -1 if no solution is found
}
 
// Driver code
signed main()
{
    int X = 18, Y = 42;
 
    // Function call
    cout << FindN(X, Y);
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
public class Main {
 
    static long findN(long x, long y)
    {
        long N = Math.max(x, y);
 
        // Loop through all possible values of N
        while (N <= 1000000000000000000L) { // loop until N
                                            // <= 10^18
            if ((N + x) % y == 0
                && (N - y) % x
                       == 0) { // check if both conditions
                               // are satisfied
                return N; // return the value of N if a
                          // solution is found
            }
            N++; // increment N
        }
 
        return -1; // return -1 if no solution is found
    }
 
    public static void main(String[] args)
    {
        long X = 18, Y = 42;
 
        // Function call
        System.out.println(findN(X, Y));
    }
}
 
// Contributed by adityasha4x71


Python3




def FindN(x, y):
    N = max(x, y)
    while N <= 10**18:
        if (N + x) % y == 0 and (N - y) % x == 0:
            return N
        N += 1
    return -1
 
 
# Driver code
X, Y = 18, 42
print(FindN(X, Y))


C#




using System;
 
namespace ConsoleApp
{
    class Program
    {
        static long FindN(long x, long y)
        {
            long N = Math.Max(x, y);
 
            // Loop through all possible values of N
            while (N <= 1000000000000000000)
            {
                // check if both conditions are satisfied
                if ((N + x) % y == 0 && (N - y) % x == 0)
                {
                    return N; // return the value of N if a solution is found
                }
                N++; // increment N
            }
 
            return -1; // return -1 if no solution is found
        }
 
        static void Main(string[] args)
        {
            long X = 18, Y = 42;
 
            // Function call
            Console.WriteLine(FindN(X, Y));
        }
    }
}


Javascript




function findN(x, y) {
  let N = Math.max(x, y);
   
  // Loop through all possible values of N
  while (N <= 1000000000000000000) {
    // Check if both conditions are satisfied
    if ((N + x) % y === 0 && (N - y) % x === 0) {
      return N; // Return the value of N if a solution is found
    }
    N++; // Increment N
  }
   
  return -1; // Return -1 if no solution is found
}
 
const X = 18, Y = 42;
 
// Function call
console.log(findN(X, Y));


Output

150

Time Complexity: O(1018)
Auxiliary Space: O(1)

Efficient Approach: The problem can be solved based on the following idea:

We can implement the simple math concept of the number system.

  • N + X = Y    …………(i)
  • N – Y = X     …………(ii)

Normalizes the equation we can get N may be equal to (X*Y – X + Y). Also, it is satisfying these two conditions. So, the answer is (X * Y – X + Y).

Below is the implementation of the above approach:

C++




// C++ code for the above approach:
#include <iostream>
using namespace std;
#define int long long int
 
// Function to find N
int FindN(int x, int y)
{
 
    // Mathematical equation from approach
    int N = (x * y) - x + y;
 
    // Return N
    return N;
}
 
// Driver code
signed main()
{
 
    int X = 18, Y = 42;
 
    // Function call
    cout << FindN(X, Y);
    return 0;
}


Java




// Java code for the above approach
import java.util.*
 
    public class Main {
 
    // Function to find N
    public static int FindN(int x, int y)
    {
 
        // Mathematical equation from approach
        int N = (x * y) - x + y;
 
        // Return N
        return N;
    }
    public static void main(String[] args)
    {
        int X = 18, Y = 42;
 
        // Function call
        System.out.println(FindN(X, Y));
    }
}
 
// This code is contributed by ik_9


Python3




# Python code for the above approach:
 
# Function to find N
def find_n(x, y):
 
    # Mathematical equation from approach
    N = (x * y) - x + y
 
    # Return N
    return N
 
# Driver Code
x = 18
y = 42
 
# Function call
print(find_n(x, y))
 
# This Code is Contributed by Prasad Kandekar(prasad264)


C#




// C# code for the above approach
using System;
 
public class GFG {
 
    // Function to find N
    static int FindN(int x, int y)
    {
 
        // Mathematical equation from approach
        int N = (x * y) - x + y;
 
        // Return N
        return N;
    }
 
    static public void Main()
    {
 
        // Code
        int X = 18, Y = 42;
 
        // Function call
        Console.WriteLine(FindN(X, Y));
    }
}
 
// This code is contributed by lokesh.


Javascript




// JavaScript code for the above approach
 
function FindN(x, y) {
// Mathematical equation from approach
let N = (x * y) - x + y;
 
// Return N
return N;
}
 
let X = 18;
let Y = 42;
 
// Function call
console.log(FindN(X, Y));
 
// This code is contributed by anskalyan3.


Output

780

Time Complexity: O(1)
Auxiliary Space: O(1)

Last Updated :
05 Apr, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments