Given a positive integer R representing the radius of the circle and the center of the circle (X1, Y1) and another point (X2, Y2) in the cartesian plane, the task is to find the angle between the pair of tangents drawn from the point (X2, Y2) to the circle.
Examples:
Input: R = 6, (X1, Y1) = (5, 1), (X2, Y2) = (6, 9)
Output: 96.1851Input: R = 4, (X1, Y1) = (7, 12), (X2, Y2) = (3, 4)
Output: 53.1317
Approach: The given problem can be solved based on the following observations:
- The radius makes an angle of 90 degrees with the tangent at the point of contact of the tangent and circle. Also, the angle subtended by the pair of tangents (?) is bisected by the line joining the center of the circle and the exterior point.
- Therefore, the distance between the center and the exterior point can be calculated using the distance formula as:
Distance =
Now, consider d as the distance between the two given points, then In the right-angled triangle OAB,
=>
=>
=>
=>
Therefore, using the above formula, the angle between the pair of tangents drawn from the point (X2, Y2) to the circle can be calculated.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <cmath> #include <iostream> using namespace std; // Function to find the distance between // center and the exterior point double point_distance( int x1, int y1, int x2, int y2) { // Find the difference between // the x and y coordinates int p = (x2 - x1); int q = (y2 - y1); // Using the distance formula double distance = sqrt (p * p + q * q); return distance; } // Function to find the angle between // the pair of tangents drawn from the // point (X2, Y2) to the circle. void tangentAngle( int x1, int y1, int x2, int y2, double radius) { // Calculate the distance between // the center and exterior point double distance = point_distance( x1, y1, x2, y2); // Invalid Case if (radius / distance > 1 || radius / distance < -1) { cout << -1; } // Find the angle using the formula double result = 2 * asin (radius / distance) * 180 / 3.1415; // Print the resultant angle cout << result << " degrees" ; } // Driver Code int main() { int radius = 4; int x1 = 7, y1 = 12; int x2 = 3, y2 = 4; tangentAngle(x1, y1, x2, y2, radius); return 0; } |
Java
// java program for the above approach import java.io.*; import java.lang.*; import java.util.*; class GFG { // Function to find the distance between // center and the exterior point static double point_distance( int x1, int y1, int x2, int y2) { // Find the difference between // the x and y coordinates int p = (x2 - x1); int q = (y2 - y1); // Using the distance formula double distance = Math.sqrt(p * p + q * q); return distance; } // Function to find the angle between // the pair of tangents drawn from the // point (X2, Y2) to the circle. static void tangentAngle( int x1, int y1, int x2, int y2, double radius) { // Calculate the distance between // the center and exterior point double distance = point_distance( x1, y1, x2, y2); // Invalid Case if (radius / distance > 1 || radius / distance < - 1 ) { System.out.println(- 1 ); } // Find the angle using the formula double result = 2 * Math.asin(radius / distance) * 180 / 3.1415 ; // Print the resultant angle System.out.println(String.format( "%.4f" , result) + " degrees" ); } // Driver Code public static void main(String[] args) { int radius = 4 ; int x1 = 7 , y1 = 12 ; int x2 = 3 , y2 = 4 ; tangentAngle(x1, y1, x2, y2, radius); } } // This code is contributed by susmitakundugoaldanga. |
Python3
# Python 3 program for the above approach import math # Function to find the distance between # center and the exterior point def point_distance(x1, y1, x2, y2): # Find the difference between # the x and y coordinates p = (x2 - x1) q = (y2 - y1) # Using the distance formula distance = math.sqrt(p * p + q * q) return distance # Function to find the angle between # the pair of tangents drawn from the # point (X2, Y2) to the circle. def tangentAngle(x1, y1, x2, y2, radius): # Calculate the distance between # the center and exterior point distance = point_distance( x1, y1, x2, y2) # Invalid Case if (radius / distance > 1 or radius / distance < - 1 ): print ( - 1 ) # Find the angle using the formula result = 2 * math.asin(radius / distance) * 180 / 3.1415 # Print the resultant angle print (result, " degrees" ) # Driver Code if __name__ = = "__main__" : radius = 4 x1 = 7 y1 = 12 x2 = 3 y2 = 4 tangentAngle(x1, y1, x2, y2, radius) # This code is contributed by ukasp. |
C#
// C# program for the above approach using System; class GFG{ // Function to find the distance between // center and the exterior point static double point_distance( int x1, int y1, int x2, int y2) { // Find the difference between // the x and y coordinates int p = (x2 - x1); int q = (y2 - y1); // Using the distance formula double distance = Math.Sqrt(p * p + q * q); return distance; } // Function to find the angle between // the pair of tangents drawn from the // point (X2, Y2) to the circle. static void tangentAngle( int x1, int y1, int x2, int y2, double radius) { // Calculate the distance between // the center and exterior point double distance = point_distance(x1, y1, x2, y2); // Invalid Case if (radius / distance > 1 || radius / distance < -1) { Console.WriteLine(-1); } // Find the angle using the formula double result = 2 * Math.Asin( radius / distance) * 180 / 3.1415; // Print the resultant angle Console.WriteLine( String.Format( "{0:0.0000}" , result) + " degrees" ); } // Driver code static void Main() { int radius = 4; int x1 = 7, y1 = 12; int x2 = 3, y2 = 4; tangentAngle(x1, y1, x2, y2, radius); } } // This code is contributed by abhinavjain194 |
Javascript
<script> // JavaScript program for the above approach // Function to find the distance between // center and the exterior point function point_distance( x1, y1, x2, y2) { // Find the difference between // the x and y coordinates var p = (x2 - x1); var q = (y2 - y1); // Using the distance formula var distance = Math.sqrt(p * p + q * q); return distance; } // Function to find the angle between // the pair of tangents drawn from the // point (X2, Y2) to the circle. function tangentAngle( x1, y1, x2, y2, radius) { // Calculate the distance between // the center and exterior point var distance = point_distance(x1, y1, x2, y2); // Invalid Case if (radius / distance > 1 || radius / distance < -1) { document.write(-1 + "<br>" ); } // Find the angle using the formula var result = 2 * Math.asin( radius / distance) * 180 / 3.1415; // Print the resultant angle document.write( result.toFixed(4) + " degrees" ); } // Driver code var radius = 4; var x1 = 7, y1 = 12; var x2 = 3, y2 = 4; tangentAngle(x1, y1, x2, y2, radius); </script> |
53.1317 degrees
Time Complexity: O(logn) where n = (x2-x1)2+(y2-y1)2, because using inbuilt sqrt function
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!