Monday, November 18, 2024
Google search engine
HomeData Modelling & AIFind path between lowest and highest value in a Binary tree

Find path between lowest and highest value in a Binary tree

Given a binary tree consisting of N nodes. Find the path between the node having the lowest value to the node having the highest value. There is no restriction on the traversal, i.e. the tree can be traversed upward, bottom, left and right.

Examples:

Input: N = 8

            2
         /     \
      1        6
    /   \         \   
  4   21        26
  /       \
5        7

{(2), (1, 6), (4, 21), (26), (5), (7)}
Output: 1 -> 2 -> 6 -> 26 
Explanation: The minimum value in the tree is 1, while the maximum value is 26. So the path from the minimum value, i.e. 1 to the maximum value, i.e. 26 is 1 -> 2 -> 6 -> 26. Other than that, there is no other path from the node consisting of the minimum value to the node consisting of the maximum value.

Input: N = 5

       10
      /  \
     5    20
         /  \
        17  25

{(10), (5, 20), (), (17, 25)}
Output: 5 -> 10 -> 20 -> 25
Explanation: The lowest node is 5 and the highest node is 25. The path between these two nodes is [5, 10, 20, 25].

Approach: This can be solved with the following idea:

  • The first intuition that builds up in minds is to traverse the entire binary tree and find the node with the lowest and highest values. 
  • Then find the lowest common ancestor of the nodes with the lowest and highest values, then print the paths from the lowest node to the highest node using the parent pointers. 
  • We start at the highest value node and follow its parent pointers until we reach the lowest common ancestor. Then, we print the lowest common ancestor and follow the parent pointers of the lowest value node until we reach the next lowest common ancestor. 

Below are the steps involved in the implementation of the code:

  • The program below defines a TreeNode struct to represent a node in the binary tree.
  • The findPath function takes the root node of the binary tree as input and finds the node with the lowest value and the node with the highest value by performing a breadth-first search of the tree.
  • Then, the function traverses up from the lowest value node and the highest value node to find their common ancestor node. 
  • Finally, the function prints the path from the lowest value node to the common ancestor node and the path from the common ancestor node to the highest value node.

C++




// C++ code for the above approach:
#include <bits/stdc++.h>
using namespace std;
 
// A structure to represent the node
// of the tree
struct TreeNode {
    int val;
    TreeNode* left;
    TreeNode* right;
    TreeNode* parent;
    TreeNode(int x)
        : val(x), left(NULL), right(NULL), parent(NULL)
    {
    }
};
 
// Function to find path between the node
// having the lowest value to the node
// having the highest value.
void findPath(TreeNode* root)
{
 
    TreeNode* minNode = root;
    TreeNode* maxNode = root;
 
    queue<TreeNode*> q;
    q.push(root);
 
    // Find the node with the lowest
    // value and the node with
    // the highest value
    while (!q.empty()) {
        TreeNode* node = q.front();
        q.pop();
        if (node->val < minNode->val)
            minNode = node;
        if (node->val > maxNode->val)
            maxNode = node;
        if (node->left) {
            node->left->parent = node;
            q.push(node->left);
        }
        if (node->right) {
            node->right->parent = node;
            q.push(node->right);
        }
    }
 
    // Traverse up from the lowest value
    // node until we reach the common
    // ancestor node
    while (minNode->parent != nullptr
           && minNode->parent->val > maxNode->val) {
        minNode = minNode->parent;
    }
 
    // Traverse up from the highest value
    // node until we reach the
    // common ancestor node
    while (maxNode->parent != nullptr
           && maxNode->parent->val < minNode->val) {
        maxNode = maxNode->parent;
    }
 
    // Print the path from the lowest
    // value node to the common
    // ancestor node
    cout << minNode->val << " ";
 
    // Print the path from the common
    // ancestor node to the
    // highest value node
    set<int> path;
    while (maxNode != nullptr) {
        path.insert(maxNode->val);
        maxNode = maxNode->parent;
    }
    for (auto itr = path.begin(); itr != path.end();
         itr++) {
        cout << *itr << " ";
    }
 
    cout << endl;
}
 
// Driver code
int main()
{
 
    TreeNode* root = new TreeNode(2);
    root->left = new TreeNode(1);
    root->right = new TreeNode(6);
    root->left->left = new TreeNode(4);
    root->left->right = new TreeNode(21);
    root->right->right = new TreeNode(26);
    root->left->left->left = new TreeNode(5);
    root->left->right->right = new TreeNode(7);
    root->parent = NULL;
 
    // Function call
    findPath(root);
    return 0;
}


Java




// JAVA code for the above approach:
import java.util.*;
 
// A class to represent the node of the tree
class TreeNode {
    int val;
    TreeNode left;
    TreeNode right;
    TreeNode parent;
 
    TreeNode(int x)
    {
        val = x;
        left = null;
        right = null;
        parent = null;
    }
}
 
// Main class
public class Main {
 
    // Function to find path between the node
    // having the lowest value to the node
    // having the highest value.
    public static void findPath(TreeNode root)
    {
 
        TreeNode minNode = root;
        TreeNode maxNode = root;
 
        Queue<TreeNode> q = new LinkedList<>();
        q.add(root);
 
        // Find the node with the lowest
        // value and the node with
        // the highest value
        while (!q.isEmpty()) {
            TreeNode node = q.poll();
            if (node.val < minNode.val)
                minNode = node;
            if (node.val > maxNode.val)
                maxNode = node;
            if (node.left != null) {
                node.left.parent = node;
                q.add(node.left);
            }
            if (node.right != null) {
                node.right.parent = node;
                q.add(node.right);
            }
        }
 
        // Traverse up from the lowest value
        // node until we reach the common
        // ancestor node
        while (minNode.parent != null
               && minNode.parent.val > maxNode.val) {
            minNode = minNode.parent;
        }
 
        // Traverse up from the highest value
        // node until we reach the
        // common ancestor node
        while (maxNode.parent != null
               && maxNode.parent.val < minNode.val) {
            maxNode = maxNode.parent;
        }
 
        // Print the path from the lowest
        // value node to the common
        // ancestor node
        System.out.print(minNode.val + " ");
 
        // Print the path from the common
        // ancestor node to the
        // highest value node
        Set<Integer> path = new TreeSet<>();
        while (maxNode != null) {
            path.add(maxNode.val);
            maxNode = maxNode.parent;
        }
        for (int val : path) {
            System.out.print(val + " ");
        }
 
        System.out.println();
    }
 
    // Driver code
    public static void main(String[] args)
    {
 
        TreeNode root = new TreeNode(2);
        root.left = new TreeNode(1);
        root.right = new TreeNode(6);
        root.left.left = new TreeNode(4);
        root.left.right = new TreeNode(21);
        root.right.right = new TreeNode(26);
        root.left.left.left = new TreeNode(5);
        root.left.right.right = new TreeNode(7);
        root.parent = null;
 
        // Function call
        findPath(root);
    }
}
 
// This code is contributed by rambabuguphka


Python3




from queue import Queue
 
# A class to represent the node of the tree
class TreeNode:
    def __init__(self, x):
        self.val = x
        self.left = None
        self.right = None
        self.parent = None
 
# Function to find the path between the node
# having the lowest value to the node
# having the highest value.
def find_path(root):
    min_node = root
    max_node = root
 
    q = Queue()
    q.put(root)
 
    # Find the node with the lowest
    # value and the node with the
    # highest value
    while not q.empty():
        node = q.get()
        if node.val < min_node.val:
            min_node = node
        if node.val > max_node.val:
            max_node = node
        if node.left:
            node.left.parent = node
            q.put(node.left)
        if node.right:
            node.right.parent = node
            q.put(node.right)
 
    # Traverse up from the lowest value
    # node until we reach the common
    # ancestor node
    while min_node.parent is not None and min_node.parent.val > max_node.val:
        min_node = min_node.parent
 
    # Traverse up from the highest value
    # node until we reach the
    # common ancestor node
    while max_node.parent is not None and max_node.parent.val < min_node.val:
        max_node = max_node.parent
 
    # Print the path from the lowest
    # value node to the common
    # ancestor node
    print(min_node.val, end=" ")
 
    # Print the path from the common
    # ancestor node to the
    # highest value node
    path = set()
    while max_node is not None:
        path.add(max_node.val)
        max_node = max_node.parent
 
    for val in sorted(path):
        print(val, end=" ")
 
    print()
 
# Driver code
if __name__ == "__main__":
    # Create the binary tree
    root = TreeNode(2)
    root.left = TreeNode(1)
    root.right = TreeNode(6)
    root.left.left = TreeNode(4)
    root.left.right = TreeNode(21)
    root.right.right = TreeNode(26)
    root.left.left.left = TreeNode(5)
    root.left.right.right = TreeNode(7)
    root.parent = None
 
    # Function call to find and print the path
    find_path(root)


C#




// C# code for the above approach:
using System;
using System.Collections.Generic;
 
// A class to represent the node of the tree
public class TreeNode
{
    public int val;
    public TreeNode left;
    public TreeNode right;
    public TreeNode parent;
 
    public TreeNode(int x)
    {
        val = x;
        left = null;
        right = null;
        parent = null;
    }
}
 
// Main class
public class GFG
{
 
    // Function to find path between the node
    // having the lowest value to the node
    // having the highest value.
    public static void FindPath(TreeNode root)
    {
 
        TreeNode minNode = root;
        TreeNode maxNode = root;
 
        Queue<TreeNode> q = new Queue<TreeNode>();
        q.Enqueue(root);
 
        // Find the node with the lowest
        // value and the node with
        // the highest value
        while (q.Count > 0)
        {
            TreeNode node = q.Dequeue();
            if (node.val < minNode.val)
                minNode = node;
            if (node.val > maxNode.val)
                maxNode = node;
            if (node.left != null)
            {
                node.left.parent = node;
                q.Enqueue(node.left);
            }
            if (node.right != null)
            {
                node.right.parent = node;
                q.Enqueue(node.right);
            }
        }
 
        // Traverse up from the lowest value
        // node until we reach the common
        // ancestor node
        while (minNode.parent != null
               && minNode.parent.val > maxNode.val)
        {
            minNode = minNode.parent;
        }
 
        // Traverse up from the highest value
        // node until we reach the
        // common ancestor node
        while (maxNode.parent != null
               && maxNode.parent.val < minNode.val)
        {
            maxNode = maxNode.parent;
        }
 
        // Print the path from the lowest
        // value node to the common
        // ancestor node
        Console.Write(minNode.val + " ");
 
        // Print the path from the common
        // ancestor node to the
        // highest value node
        SortedSet<int> path = new SortedSet<int>();
        while (maxNode != null)
        {
            path.Add(maxNode.val);
            maxNode = maxNode.parent;
        }
        foreach (int val in path)
        {
            Console.Write(val + " ");
        }
 
        Console.WriteLine();
    }
 
    // Driver code
    public static void Main(string[] args)
    {
 
        TreeNode root = new TreeNode(2);
        root.left = new TreeNode(1);
        root.right = new TreeNode(6);
        root.left.left = new TreeNode(4);
        root.left.right = new TreeNode(21);
        root.right.right = new TreeNode(26);
        root.left.left.left = new TreeNode(5);
        root.left.right.right = new TreeNode(7);
        root.parent = null;
 
        // Function call
        FindPath(root);
    }
}
 
// This code is contributed by Sakshi


Javascript




<script>
    // Javascript code for the above approach:
     
    // A class to represent the node
    // of the tree
    class TreeNode {
    constructor(val) {
        this.val = val;
        this.left = null;
        this.right = null;
        this.parent = null;
    }
    }
     
    // Function to find path between the node
    // having the lowest value to the node
    // having the highest value.
    function findPath(root) {
    let minNode = root;
    let maxNode = root;
     
    const queue = [];
    queue.push(root);
     
    // Find the node with the lowest
    // value and the node with
    // the highest value
    while (queue.length !== 0) {
        const node = queue.shift();
        if (node.val < minNode.val)
            minNode = node;
        if (node.val > maxNode.val)
            maxNode = node;
        if (node.left) {
            node.left.parent = node;
            queue.push(node.left);
        }
        if (node.right) {
            node.right.parent = node;
            queue.push(node.right);
        }
    }
     
    // Traverse up from the lowest value
    // node until we reach the common
    // ancestor node
    while (minNode.parent !== null
        && minNode.parent.val > maxNode.val) {
        minNode = minNode.parent;
    }
     
    // Traverse up from the highest value
    // node until we reach the
    // common ancestor node
    while (maxNode.parent !== null
        && maxNode.parent.val < minNode.val) {
        maxNode = maxNode.parent;
    }
     
    // Print the path from the lowest
    // value node to the
    // highest value node
    let path = [];
    while (maxNode !== null) {
        path.push(maxNode.val);
        maxNode = maxNode.parent;
    }
    document.write(minNode.val + " " + path.reverse().join(" "));
    }
     
    // Driver code
    function main() {
    const root = new TreeNode(2);
    root.left = new TreeNode(1);
    root.right = new TreeNode(6);
    root.left.left = new TreeNode(4);
    root.left.right = new TreeNode(21);
    root.right.right = new TreeNode(26);
    root.left.left.left = new TreeNode(5);
    root.left.right.right = new TreeNode(7);
    root.parent = null;
     
    // Function call
    findPath(root);
    }
     
    main();
     
    // This code is contributed by Pushpesh Raj
     
</script>


Output

1 2 6 26 







Time Complexity: O(N) 
Auxiliary Space: O(h)

Last Updated :
31 Oct, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments