Given an array arr[] of length N, where arr is derived from an array nums[] which is lost. Array arr[] is derived as:
arr[i] = (nums[0] + nums[1] + … + nums[i]) + (nums[i] + nums[i+1] + … + nums[N-1]).
The task is to find nums[] array of length N.
Examples:
Input: N = 4, arr[] = {9, 10, 11, 10}
Output: {1, 2, 3, 2}
Explanation: If nums[] = {1, 2, 3, 2}, then according to above definition
arr[0] = (nums[0]) + (nums[0] + nums[1] + nums[2] + nums[3]) = 1 + 1 + 2 + 3 + 2 = 9
arr[1] = (nums[0] + nums[1]) + (nums[1] + nums[2] + nums[3]) = 1 + 2 + 2 + 3 + 2 = 10
arr[2] = (nums[0] + nums[1] + nums[2]) + (nums[2] + nums[3]) = 1 + 2 + 3 + 3 + 2 = 11
arr[3] = (nums[0] + nums[1] + nums[2] + nums[3]) + (nums[3]) = 1 + 2 + 3 + 2 + 2 = 10Input: N = 2, arr[] = [25, 20]
Output: [10, 5]
Approach: Follow the below idea to solve the problem:
Suppose nums[] contains [a1, a2, a3, …, aN]
Then, sum = a1 + a2 + a3 + . . . + aN.
We are given
b1 = a1 + a1 + a2 + . . . + aN = a1 + sum …..(1)
Similarly,
b2 = a1 + a2 + a2 + . . . + aN = a2 + sum …..(2)
. . . (so on) and in last
b1 = a1 + a2 + a3 + . . . + aN + aN = aN + sum …..(N)
where [b1, b2, b3 , . . ., bN] are elements of arr[] and,
total = b1 + b2 + b3 + . . . + bNAdding all equation (1) + (2) + (3) + …. + (N) we will get
b1 + b2 + b3 + . . . + bN = (a1 + sum) + (a2 + sum) + . . . + (aN + sum)
total = (a1 + a1 + a2 + . . . + aN) + (N * sum)
total = (sum) + (N * sum)
total = (N + 1) * sumNow find the value of sum variable after that simply:
a1 = (b1 – sum), a2 = (b2 – sum), . . ., aN = (bN – sum)
Using the above idea follow the below steps to implement the code:
- First of all, try to store the sum of elements of arr[] in a variable let’s say total
- Using the formula (N + 1) * sum = total, we will get the value of variable sum which denotes the sum of elements present in the nums[] array.
- At last traverse N times to find nums[0] = arr[0] – sum, nums[1] = arr[1] – sum and so on.
- Return the array and print it.
Below is the implementation of the above approach:
C++
// C++ Algorithm for the above approach #include <iostream> #include <vector> using namespace std; // Function to find the original // array nums[] vector< int > findOrgArray(vector< int > arr, int N) { // Total variable stores the sum of // elements of arr[] int total = 0; for ( int val : arr) total += val; // Sum variable stores the sum of // elements of nums[] int sum = (total / (N + 1)); vector< int > v; // Traversing to find the elements // of nums[] for ( int i = 0; i < N; i++) { int val = arr[i] - sum; v.push_back(val); } // Returning nums[] return v; } int main() { int N = 4; vector< int > arr = { 9, 10, 11, 10 }; vector< int > v = findOrgArray(arr, N); for ( auto val : v) cout << val << " " ; return 0; } |
Java
// Java algorithm of the above approach import java.util.*; class GFG { // Driver Code public static void main(String[] args) { int N = 4 ; int [] arr = { 9 , 10 , 11 , 10 }; List<Integer> nums = findOrgArray(arr, N); for ( int x : nums) System.out.print(x + " " ); } // Function to find the original // array nums[] public static List<Integer> findOrgArray( int [] arr, int N) { // Total variable stores the sum of // elements of arr[] int total = 0 ; for ( int val : arr) total += val; // Sum variable stores the sum of // elements of nums[] int sum = (total / (N + 1 )); List<Integer> nums = new ArrayList<>(); // Traversing to find the elements // of nums[] for ( int i = 0 ; i < N; i++) { int val = arr[i] - sum; nums.add(val); } // Returning nums[] return nums; } } |
Python3
# python3 Algorithm for the above approach # Function to find the original # array nums[] def findOrgArray(arr, N) : # Total variable stores the sum of # elements of arr[] total = 0 for i in arr : total + = i # Sum variable stores the sum of # elements of nums[] sum = int (total / (N + 1 )); v = [] # Traversing to find the elements # of nums[] for i in range (N) : val = arr[i] - sum v.append(val) # Returning nums[] return v # Driver Code if __name__ = = "__main__" : N = 4 arr = [ 9 , 10 , 11 , 10 ] v = findOrgArray(arr, N) for val in v : print (val,end = ' ' ) # this code is contributed by aditya942003patil |
C#
// C# program to implement // the above approach using System; using System.Collections.Generic; public class GFG { // Function to find the original // array nums[] public static List< int > findOrgArray( int [] arr, int N) { // Total variable stores the sum of // elements of arr[] int total = 0; //for (int x = 0; x < arr.count; x++) foreach ( int val in arr) total += val; // Sum variable stores the sum of // elements of nums[] int sum = (total / (N + 1)); List< int > nums = new List< int >(); // Traversing to find the elements // of nums[] for ( int i = 0; i < N; i++) { int val = arr[i] - sum; nums.Add(val); } // Returning nums[] return nums; } // Driver Code public static void Main(String []args) { int N = 4; int [] arr = { 9, 10, 11, 10 }; List< int > nums = findOrgArray(arr, N); for ( int x = 0; x < nums.Count; x++) Console.Write(nums[x] + " " ); } } // This code is contributed by sanjoy_62. |
Javascript
<script> // Function to find the original // array nums[] function findOrgArray(arr, N) { // Total variable stores the sum of // elements of arr[] let total = 0; for (let i = 0; i < N; i++) total += arr[i]; // Sum variable stores the sum of // elements of nums[] let sum = (total / (N + 1)); let v= new Array(N); // Traversing to find the elements // of nums[] for (let i = 0; i < N; i++) { v[i] = arr[i] - sum; } // Returning nums[] return v; } let N = 4; let arr = [ 9, 10, 11, 10 ]; let v = findOrgArray(arr, N); for (let i = 0; i < N; i++) document.write(v[i]+ " " ); // This code is contributed by satwik4409. </script> |
1 2 3 2
Time Complexity: O(N)
Auxiliary Space: O(N), to further reduce it to O(1), store the value in the same given array arr[] rather than storing it in a new array.
Another Approach:
- Initialize a variable named “total” to 0.
- Traverse the input array “arr” using a range-based for loop.
a. For each element “val” in “arr”, add “val” to the “total” variable. - Compute the sum of the original array “nums” using the formula: sum = total / (N + 1).
- Traverse the input array “arr” again using a for loop with index “i” from 0 to N-1.
a. For each element in “arr”, subtract “sum” from it and store the result back into “arr[i]”. This effectively undoes the modification made to “arr” and recovers the original array “nums”.
Below is the implementation of the above approach:
C++
#include <iostream> #include <vector> using namespace std; // Function to find the original array nums[] void findOrgArray(vector< int >& arr, int N) { // Total variable stores the sum of elements of arr[] int total = 0; for ( int val : arr) total += val; // Sum variable stores the sum of elements of nums[] int sum = (total / (N + 1)); // Traversing to find the elements of nums[] for ( int i = 0; i < N; i++) { arr[i] = arr[i] - sum; } } int main() { int N = 4; vector< int > arr = { 9, 10, 11, 10 }; findOrgArray(arr, N); for ( auto val : arr) cout << val << " " ; return 0; } |
Java
import java.util.*; import java.io.*; public class GFG { // Function to find the original array nums[] static void findOrgArray(List<Integer> arr, int N) { // Total variable stores the sum of elements of arr[] int total = 0 ; for ( int val : arr) { total += val; } // Sum variable stores the sum of elements of nums[] int sum = total / (N + 1 ); // Traversing to find the elements of nums[] for ( int i = 0 ; i < N; i++) { arr.set(i, arr.get(i) - sum); } } // Driver Code public static void main(String[] args) { int N = 4 ; List<Integer> arr = new ArrayList<>(); arr.add( 9 ); arr.add( 10 ); arr.add( 11 ); arr.add( 10 ); findOrgArray(arr, N); for ( int val : arr) { System.out.print(val + " " ); } } } |
Python3
#Function to find the original array nums[] def find_org_array(arr, N): total = 0 #Total variable stores the sum of elements of arr[] for val in arr: total + = val #Sum variable stores the sum of elements of nums[] sum = int (total / (N + 1 )) #Traversing to find the elements of nums[] for i in range (N): arr[i] - = sum return arr #Driver Code arr = [ 9 , 10 , 11 , 10 ] n = 4 #function call arr = find_org_array(arr,n) for val in arr: print (val,end = " " ) |
C#
using System; using System.Collections.Generic; class Program { // Function to find the original array nums[] static void FindOrgArray(List< int > arr, int N) { // Total variable stores the sum of elements of arr[] int total = 0; foreach ( int val in arr) total += val; // Sum variable stores the sum of elements of nums[] int sum = total / (N + 1); // Traversing to find the elements of nums[] for ( int i = 0; i < N; i++) { arr[i] = arr[i] - sum; } } static void Main() { int N = 4; List< int > arr = new List< int > { 9, 10, 11, 10 }; FindOrgArray(arr, N); foreach ( var val in arr) Console.Write(val + " " ); } } |
Javascript
// Function to find the original array nums[] function findOrgArray(arr, N) { // Total variable stores the sum of elements of arr[] let total = 0; for (let val of arr) { total += val; } // Sum variable stores the sum of elements of nums[] let sum = Math.floor(total / (N + 1)); // Traversing to find the elements of nums[] for (let i = 0; i < N; i++) { arr[i] = arr[i] - sum; } } // Driver code let N = 4; let arr = [9, 10, 11, 10]; findOrgArray(arr, N); for (let val of arr) { console.log(val + " " ); } |
1 2 3 2
Time Complexity: O(n)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!