Saturday, November 16, 2024
Google search engine
HomeData Modelling & AIFind Largest element in a Queue

Find Largest element in a Queue

Given a queue of integers, the task is to write a program that efficiently finds the largest element in that queue. Return -1 if the queue is empty.

Examples:

Input: Queue = {15, 27, 18}
Output: 27
Explanation: Among 15(front), 27 and 18(back), 27 is the largest. 

Input: Queue = {12, 25, 29, 16, 32}
Output: 32
Explanation: Among 12(front), 25, 29, 16 and 32(back), 32 is the largest.

Naive Approach: The basic way to solve the problem is as follows:

The naive approach to finding the largest element in a queue is to just pop each element from the queue and store them in an array/vector. Then find largest element in that array.

Time Complexity: O(N), where N is the number of elements in the queue.
Auxiliary Space: O(N)

Efficient Approach: The efficient approach is to find the maximum/largest element of the queue during popping elements from the queue as follows:

  • Store the current front element in the temp variable and then pop that element.
  • Now, compare that temp with maxx and store the maximum value into maxx.

Below is the implementation of the above approach:

C++




// C++ program to find the largest
// element present in the queue
#include <bits/stdc++.h>
using namespace std;
 
// Function which return
// largest element of the queue
int maxElement(queue<int> q)
{
 
    // If queue is empty return -1
    if (q.empty())
        return -1;
 
    // To store the largest element
    int maxx = INT_MIN;
 
    // Loop which iterate until
    // queue becomes empty
    while (!q.empty()) {
        // Store the current front element
        int temp = q.front();
        // pop current front element
        q.pop();
 
        // Store maximum value between
        // temp and maxx
        maxx = max(maxx, temp);
    }
 
    // Return largest value
    return maxx;
}
 
// Driver Code
int main()
{
    queue<int> q;
 
    // Pushing elements into queue
    q.push(15);
    q.push(27);
    q.push(18);
 
    // Call function and store
    // return value into maxx
    int maxx = maxElement(q);
 
    // print the largest element
    cout << maxx << endl;
 
    return 0;
}
 
// This code is contributed by Susobhan Akhuli


Java




// Java program to find the largest
// element present in the queue
import java.util.LinkedList;
import java.util.Queue;
 
public class Main {
    // Function which returns the
    //largest element of the queue
    static int maxElement(Queue<Integer> q)
    {
        // If the queue is empty, return -1
        if (q.isEmpty())
            return -1;
 
        // To store the largest element
        int maxx = Integer.MIN_VALUE;
 
        // Loop which iterates until
      //the queue becomes empty
        while (!q.isEmpty()) {
            // Store the current front element
            int temp = q.peek();
            // Remove the current front element
            q.poll();
 
            // Store the maximum value
          //between temp and maxx
            maxx = Math.max(maxx, temp);
        }
 
        // Return the largest value
        return maxx;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        Queue<Integer> q = new LinkedList<>();
 
        // Pushing elements into the queue
        q.add(15);
        q.add(27);
        q.add(18);
 
        // Call the function and store the
        // return value into maxx
        int maxx = maxElement(q);
 
        // Print the largest element
        System.out.println(maxx);
    }
}
 
// This code is contributed by Susobhan Akhuli


Python3




# Python program to find the
# largest element present
# in the queue
from queue import Queue
 
# Function which return largest element
# of the queue
 
 
def maxElement(q: Queue) -> int:
    # If queue is empty return -1
    if q.empty():
        return -1
 
    # To store the largest element
    maxx = float('-inf')
 
    # Loop which iterate until
    # queue becomes empty
    while not q.empty():
        # Store the current front element
        temp = q.get()
        # pop current front element
 
        # Store maximum value
        # between temp and maxx
        maxx = max(maxx, temp)
 
    # Return largest value
    return maxx
 
 
# Driver Code
if __name__ == '__main__':
    q = Queue()
 
    # Pushing elements into queue
    q.put(15)
    q.put(27)
    q.put(18)
 
    # Call function and store
    # return value into maxx
    maxx = maxElement(q)
 
    # print the largest element
    print(maxx)
 
# This code is contributed by Susobhan Akhuli


C#




// C# program to find the largest
// element present in the queue
using System;
using System.Collections.Generic;
 
class GFG {
    static int MaxElement(Queue<int> q)
    {
        // If queue is empty return -1
        if (q.Count == 0)
            return -1;
 
        // To store the largest element
        int max = int.MinValue;
 
        // Loop which iterate until queue becomes empty
        while (q.Count > 0) {
            // Store the current front element
            int temp = q.Dequeue();
 
            // Store maximum value between temp and max
            max = Math.Max(max, temp);
        }
 
        // Return largest value
        return max;
    }
 
    static void Main()
    {
        Queue<int> q = new Queue<int>();
 
        // Pushing elements into queue
        q.Enqueue(15);
        q.Enqueue(27);
        q.Enqueue(18);
 
        // Call function and store return value into max
        int max = MaxElement(q);
 
        // Print the largest element
        Console.WriteLine(max);
 
        // Keep the console window open
        Console.ReadLine();
    }
}
 
// This code is contributed by Susobhan Akhuli


Javascript




// Javascript program to find the largest
// element present in the queue
 
// Function which returns the largest element of the queue
function maxElement(q) {
 
    // If queue is empty return -1
    if (q.length === 0) {
        return -1;
    }
 
    // To store the largest element
    let maxx = Number.MIN_SAFE_INTEGER;
 
    // Loop which iterates until queue becomes empty
    while (q.length !== 0) {
        // Store the current front element
        let temp = q[0];
        // Remove current front element
        q.shift();
 
        // Store maximum value between temp and maxx
        maxx = Math.max(maxx, temp);
    }
 
    // Return largest value
    return maxx;
}
 
// Driver Code
let q = [];
 
// Pushing elements into queue
q.push(15);
q.push(27);
q.push(18);
 
// Call function and store return value into maxx
let maxx = maxElement(q);
 
// Print the largest element
console.log(maxx);
 
// This code is contributed by Susobhan Akhuli


Output

27



Time Complexity: O(N), where N is the number of elements in the queue.
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments