Given a tree, and the weights of all the nodes, the task is to count the number of nodes whose weight is a perfect Square.
Examples:
Input:
Output: 3
Only the weights of nodes 1, 4 and 5 are perfect squares.
Approach: Perform dfs on the tree and for every node, check if it’s weight is a perfect square or not.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; int ans = 0; vector< int > graph[100]; vector< int > weight(100); // Function that returns true // if n is a perfect square bool isPerfectSquare( int n) { double x = sqrt (n); if ( floor (x) != ceil (x)) return false ; return true ; } // Function to perform dfs void dfs( int node, int parent) { // If weight of the current node // is a perfect square if (isPerfectSquare(weight[node])) ans += 1; for ( int to : graph[node]) { if (to == parent) continue ; dfs(to, node); } } // Driver code int main() { int x = 15; // Weights of the node weight[1] = 4; weight[2] = 5; weight[3] = 3; weight[4] = 25; weight[5] = 16; weight[6] = 30; // Edges of the tree graph[1].push_back(2); graph[2].push_back(3); graph[2].push_back(4); graph[1].push_back(5); graph[5].push_back(6); dfs(1, 1); cout << ans; return 0; } |
Java
// Java implementation of the approach import java.util.*; class GFG{ static int ans = 0 ; static Vector<Integer>[] graph = new Vector[ 100 ]; static int [] weight = new int [ 100 ]; // Function that returns true // if n is a perfect square static boolean isPerfectSquare( int n) { double x = Math.sqrt(n); if (Math.floor(x) != Math.ceil(x)) return false ; return true ; } // Function to perform dfs static void dfs( int node, int parent) { // If weight of the current node // is a perfect square if (isPerfectSquare(weight[node])) ans += 1 ; for ( int to : graph[node]) { if (to == parent) continue ; dfs(to, node); } } // Driver code public static void main(String[] args) { int x = 15 ; for ( int i = 0 ; i < 100 ; i++) graph[i] = new Vector<>(); // Weights of the node weight[ 1 ] = 4 ; weight[ 2 ] = 5 ; weight[ 3 ] = 3 ; weight[ 4 ] = 25 ; weight[ 5 ] = 16 ; weight[ 6 ] = 30 ; // Edges of the tree graph[ 1 ].add( 2 ); graph[ 2 ].add( 3 ); graph[ 2 ].add( 4 ); graph[ 1 ].add( 5 ); graph[ 5 ].add( 6 ); dfs( 1 , 1 ); System.out.print(ans); } } // This code is contributed by Rajput-Ji |
Python3
# Python3 implementation of the approach from math import * ans = 0 graph = [[] for i in range ( 100 )] weight = [ 0 ] * 100 # Function that returns true # if n is a perfect square def isPerfectSquare(n): x = sqrt(n) if (floor(x) ! = ceil(x)): return False return True # Function to perform dfs def dfs(node, parent): global ans # If weight of the current node # is a perfect square if (isPerfectSquare(weight[node])): ans + = 1 ; for to in graph[node]: if (to = = parent): continue dfs(to, node) # Driver code x = 15 # Weights of the node weight[ 1 ] = 4 weight[ 2 ] = 5 weight[ 3 ] = 3 weight[ 4 ] = 25 weight[ 5 ] = 16 weight[ 6 ] = 30 # Edges of the tree graph[ 1 ].append( 2 ) graph[ 2 ].append( 3 ) graph[ 2 ].append( 4 ) graph[ 1 ].append( 5 ) graph[ 5 ].append( 6 ) dfs( 1 , 1 ) print (ans) # This code is contributed by SHUBHAMSINGH10 |
C#
// C# program for the above approach using System; using System.Collections; using System.Collections.Generic; using System.Text; class GFG{ static int ans = 0; static ArrayList[] graph = new ArrayList[100]; static int [] weight = new int [100]; // Function that returns true // if n is a perfect square static bool isPerfectSquare( int n) { double x = Math.Sqrt(n); if (Math.Floor(x) != Math.Ceiling(x)) return false ; return true ; } // Function to perform dfs static void dfs( int node, int parent) { // If weight of the current node // is a perfect square if (isPerfectSquare(weight[node])) ans += 1; foreach ( int to in graph[node]) { if (to == parent) continue ; dfs(to, node); } } // Driver Code public static void Main( string [] args) { //int x = 15; for ( int i = 0; i < 100; i++) graph[i] = new ArrayList(); // Weights of the node weight[1] = 4; weight[2] = 5; weight[3] = 3; weight[4] = 25; weight[5] = 16; weight[6] = 30; // Edges of the tree graph[1].Add(2); graph[2].Add(3); graph[2].Add(4); graph[1].Add(5); graph[5].Add(6); dfs(1, 1); Console.Write(ans); } } // This code is contributed by rutvik_56 |
Javascript
<script> // Javascript implementation of the approach let ans=0; let graph = new Array(100); let weight = new Array(100); for (let i=0;i<100;i++) { graph[i]=[]; weight[i]=0; } // Function that returns true // if n is a perfect square function isPerfectSquare(n) { let x = Math.sqrt(n); if (Math.floor(x) != Math.ceil(x)) return false ; return true ; } // Function to perform dfs function dfs(node,parent) { // If weight of the current node // is a perfect square if (isPerfectSquare(weight[node])) ans += 1; for (let to=0;to<graph[node].length;to++) { if (graph[node][to] == parent) continue dfs(graph[node][to], node); } } // Driver code x = 15; // Weights of the node weight[1] = 4; weight[2] = 5; weight[3] = 3; weight[4] = 25; weight[5] = 16; weight[6] = 30; // Edges of the tree graph[1].push(2); graph[2].push(3); graph[2].push(4); graph[1].push(5); graph[5].push(6); dfs(1, 1); document.write( ans); // This code is contributed by unknown2108 </script> |
3
Complexity Analysis:
- Time Complexity: O(N*logV) where V is the maximum weight of a node in the tree.
In DFS, every node of the tree is processed once and hence the complexity due to the DFS is O(N) for N nodes in the tree. Also, while processing every node, in order to check if the node value is a perfect square or not, the inbuilt sqrt(V), is being called where V is the weight of the node and this function has a complexity of O(log V). Hence for every node, there is an added complexity of O(log V). Therefore, the total time complexity is O(N*logV). - Auxiliary Space: O(1).
Any extra space is not required, so the space complexity is constant.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!