Friday, November 1, 2024
Google search engine
HomeData Modelling & AICount the nodes whose weight is a perfect square

Count the nodes whose weight is a perfect square

Given a tree, and the weights of all the nodes, the task is to count the number of nodes whose weight is a perfect Square.
Examples: 
 

Input: 
 

Output:
Only the weights of nodes 1, 4 and 5 are perfect squares. 
 

 

Approach: Perform dfs on the tree and for every node, check if it’s weight is a perfect square or not.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
int ans = 0;
 
vector<int> graph[100];
vector<int> weight(100);
 
// Function that returns true
// if n is a perfect square
bool isPerfectSquare(int n)
{
    double x = sqrt(n);
    if (floor(x) != ceil(x))
        return false;
    return true;
}
 
// Function to perform dfs
void dfs(int node, int parent)
{
    // If weight of the current node
    // is a perfect square
    if (isPerfectSquare(weight[node]))
        ans += 1;
 
    for (int to : graph[node]) {
        if (to == parent)
            continue;
        dfs(to, node);
    }
}
 
// Driver code
int main()
{
    int x = 15;
 
    // Weights of the node
    weight[1] = 4;
    weight[2] = 5;
    weight[3] = 3;
    weight[4] = 25;
    weight[5] = 16;
    weight[6] = 30;
 
    // Edges of the tree
    graph[1].push_back(2);
    graph[2].push_back(3);
    graph[2].push_back(4);
    graph[1].push_back(5);
    graph[5].push_back(6);
 
    dfs(1, 1);
 
    cout << ans;
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG{
  
static int ans = 0;
  
static Vector<Integer>[] graph = new Vector[100];
static int[] weight = new int[100];
  
// Function that returns true
// if n is a perfect square
static boolean isPerfectSquare(int n)
{
    double x = Math.sqrt(n);
    if (Math.floor(x) != Math.ceil(x))
        return false;
    return true;
}
  
// Function to perform dfs
static void dfs(int node, int parent)
{
    // If weight of the current node
    // is a perfect square
    if (isPerfectSquare(weight[node]))
        ans += 1;
  
    for (int to : graph[node]) {
        if (to == parent)
            continue;
        dfs(to, node);
    }
}
  
// Driver code
public static void main(String[] args)
{
    int x = 15;
    for (int i = 0; i < 100; i++)
        graph[i] = new Vector<>();
     
    // Weights of the node
    weight[1] = 4;
    weight[2] = 5;
    weight[3] = 3;
    weight[4] = 25;
    weight[5] = 16;
    weight[6] = 30;
  
    // Edges of the tree
    graph[1].add(2);
    graph[2].add(3);
    graph[2].add(4);
    graph[1].add(5);
    graph[5].add(6);
  
    dfs(1, 1);
  
    System.out.print(ans);
}
}
 
// This code is contributed by Rajput-Ji


Python3




# Python3 implementation of the approach
from math import *
ans = 0
 
graph = [[] for i in range(100)]
weight = [0] * 100
 
# Function that returns true
# if n is a perfect square
def isPerfectSquare(n):
    x = sqrt(n)
    if (floor(x) != ceil(x)):
        return False
    return True
 
# Function to perform dfs
def dfs(node, parent):
    global ans
     
    # If weight of the current node
    # is a perfect square
    if (isPerfectSquare(weight[node])):
        ans += 1;
     
    for to in graph[node]:
        if (to == parent):
            continue
        dfs(to, node)
 
# Driver code
 
x = 15
 
# Weights of the node
weight[1] = 4
weight[2] = 5
weight[3] = 3
weight[4] = 25
weight[5] = 16
weight[6] = 30
 
# Edges of the tree
graph[1].append(2)
graph[2].append(3)
graph[2].append(4)
graph[1].append(5)
graph[5].append(6)
 
dfs(1, 1)
print(ans)
 
# This code is contributed by SHUBHAMSINGH10


C#




// C# program for the above approach
using System;
using System.Collections;
using System.Collections.Generic;
using System.Text;
 
class GFG{
     
static int ans = 0;
 
static ArrayList[] graph = new ArrayList[100];
static int[] weight = new int[100];
 
// Function that returns true
// if n is a perfect square
static bool isPerfectSquare(int n)
{
    double x = Math.Sqrt(n);
     
    if (Math.Floor(x) != Math.Ceiling(x))
        return false;
         
    return true;
}
 
// Function to perform dfs
static void dfs(int node, int parent)
{
     
    // If weight of the current node
    // is a perfect square
    if (isPerfectSquare(weight[node]))
        ans += 1;
 
    foreach(int to in graph[node])
    {
        if (to == parent)
            continue;
             
        dfs(to, node);
    }
}
     
// Driver Code
public static void Main(string[] args)
{
    //int x = 15;
    for(int i = 0; i < 100; i++)
        graph[i] = new ArrayList();
     
    // Weights of the node
    weight[1] = 4;
    weight[2] = 5;
    weight[3] = 3;
    weight[4] = 25;
    weight[5] = 16;
    weight[6] = 30;
 
    // Edges of the tree
    graph[1].Add(2);
    graph[2].Add(3);
    graph[2].Add(4);
    graph[1].Add(5);
    graph[5].Add(6);
 
    dfs(1, 1);
 
    Console.Write(ans);
}
}
 
// This code is contributed by rutvik_56


Javascript




<script>
 
// Javascript implementation of the approach
     
    let ans=0;
     
    let graph = new Array(100);
     
     
    let weight = new Array(100);
    for(let i=0;i<100;i++)
    {
        graph[i]=[];
        weight[i]=0;
    }
     
    // Function that returns true
    // if n is a perfect square
    function isPerfectSquare(n)
    {
        let x = Math.sqrt(n);
        if (Math.floor(x) != Math.ceil(x))
            return false;
        return true;
    }
     
    // Function to perform dfs
    function dfs(node,parent)
    {
        // If weight of the current node
        // is a perfect square
        if (isPerfectSquare(weight[node]))
            ans += 1;
        for(let to=0;to<graph[node].length;to++)
        {
            if(graph[node][to] == parent)
                continue
            dfs(graph[node][to], node);  
        }
         
    }
     
    // Driver code
     
    x = 15;
   
    // Weights of the node
    weight[1] = 4;
    weight[2] = 5;
    weight[3] = 3;
    weight[4] = 25;
    weight[5] = 16;
    weight[6] = 30;
       
   
    // Edges of the tree
    graph[1].push(2);
    graph[2].push(3);
    graph[2].push(4);
    graph[1].push(5);
    graph[5].push(6);
     
    dfs(1, 1);
   
    document.write( ans);
     
    // This code is contributed by unknown2108
     
</script>


Output: 

3

 

Complexity Analysis: 
 

  • Time Complexity: O(N*logV) where V is the maximum weight of a node in the tree. 
    In DFS, every node of the tree is processed once and hence the complexity due to the DFS is O(N) for N nodes in the tree. Also, while processing every node, in order to check if the node value is a perfect square or not, the inbuilt sqrt(V), is being called where V is the weight of the node and this function has a complexity of O(log V). Hence for every node, there is an added complexity of O(log V). Therefore, the total time complexity is O(N*logV).
  • Auxiliary Space: O(1). 
    Any extra space is not required, so the space complexity is constant.

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
20 Apr, 2021
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments