Monday, November 18, 2024
Google search engine
HomeData Modelling & AICount the nodes of the given tree whose weighted string is a...

Count the nodes of the given tree whose weighted string is a palindrome

Given a tree, and the weights (in the form of strings) of all the nodes, the task is to count the nodes whose weights are palindrome.

Examples: 

Input: 

Output: 3
Only the weights of the nodes 2, 3 and 5 are palindromes.

Approach: Perform dfs on the tree and for every node, check if it’s string is palindrome or not. If yes then increment the count.

Implementation: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
int cnt = 0;
 
vector<int> graph[100];
vector<string> weight(100);
 
// Function that returns true
// if x is a palindrome
bool isPalindrome(string x)
{
    int n = x.size();
    for (int i = 0; i < n / 2; i++) {
        if (x[i] != x[n - 1 - i])
            return false;
    }
    return true;
}
 
// Function to perform dfs
void dfs(int node, int parent)
{
 
    // Weight of the current node
    string x = weight[node];
 
    // If the weight is a palindrome
    if (isPalindrome(x))
        cnt += 1;
 
    for (int to : graph[node]) {
        if (to == parent)
            continue;
        dfs(to, node);
    }
}
 
// Driver code
int main()
{
 
    // Weights of the node
    weight[1] = "abc";
    weight[2] = "aba";
    weight[3] = "bcb";
    weight[4] = "moh";
    weight[5] = "aa";
 
    // Edges of the tree
    graph[1].push_back(2);
    graph[2].push_back(3);
    graph[2].push_back(4);
    graph[1].push_back(5);
 
    dfs(1, 1);
 
    cout << cnt;
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
 
static int cnt = 0;
 
static Vector<Vector<Integer>> graph = new Vector<Vector<Integer>>();
static Vector<String> weight = new Vector<String>();
 
// Function that returns true
// if x is a palindrome
static boolean isPalindrome(String x)
{
    int n = x.length();
    for (int i = 0; i < n / 2; i++)
    {
        if (x.charAt(i) != x.charAt(n - 1 - i))
            return false;
    }
    return true;
}
 
// Function to perform dfs
static void dfs(int node, int parent)
{
 
    // Weight of the current node
    String x = weight.get(node);
     
 
    // If the weight is a palindrome
    if (isPalindrome(x))
        cnt += 1;
 
    for (int i=0;i<graph.get(node).size();i++)
    {
         
        if ( graph.get(node).get(i)== parent)
            continue;
        dfs(graph.get(node).get(i), node);
    }
}
 
// Driver code
public static void main(String args[])
{
 
    // Weights of the node
    weight.add( "");
    weight.add( "abc");
    weight.add( "aba");
    weight.add( "bcb");
    weight.add( "moh");
    weight.add( "aa");
     
    for(int i = 0; i < 100; i++)
    graph.add(new Vector<Integer>());
     
    // Edges of the tree
    graph.get(1).add(2);
    graph.get(2).add(3);
    graph.get(2).add(4);
    graph.get(1).add(5);
    dfs(1, 1);
 
    System.out.println( cnt);
}
}
 
// This code is contributed by Arnab Kundu


Python3




# Python3 implementation of the approach
cnt = 0
 
graph = [0] * 100
for i in range(100):
    graph[i] = []
 
weight = ["0"] * 100
 
# Function that returns true
# if x is a palindrome
def isPalindrome(x):
    n = len(x)
 
    for i in range(0, n // 2):
        if x[i] != x[n - 1 - i]:
            return False
 
    return True
 
# Function to perform dfs
def dfs(node, parent):
    global cnt
 
    # Weight of the current node
    x = weight[node]
 
    # If the weight is a palindrome
    if (isPalindrome(x)):
        cnt += 1
 
    for to in graph[node]:
        if to == parent:
            continue
        dfs(to, node)
 
# Driver Code
if __name__ == "__main__":
 
    # Weights of the node
    weight[0] = ""
    weight[1] = "abc"
    weight[2] = "aba"
    weight[3] = "bcb"
    weight[4] = "moh"
    weight[5] = "aa"
 
    # Edges of the tree
    graph[1].append(2)
    graph[2].append(3)
    graph[2].append(4)
    graph[1].append(5)
 
    dfs(1, 1)
 
    print(cnt)
 
# This code is contributed by
# sanjeev2552


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG
{
 
    static int cnt = 0;
     
    static List<List<int>> graph = new List<List<int>>();
    static List<String> weight = new List<String>();
     
    // Function that returns true
    // if x is a palindrome
    static bool isPalindrome(string x)
    {
        int n = x.Length;
        for (int i = 0; i < n / 2; i++)
        {
            if (x[i] != x[n - 1 - i])
                return false;
        }
        return true;
    }
     
    // Function to perform dfs
    static void dfs(int node, int parent)
    {
     
        // Weight of the current node
        String x = weight[node];
     
        // If the weight is a palindrome
        if (isPalindrome(x))
            cnt += 1;
     
        for (int i = 0; i < graph[node].Count; i++)
        {
            if (graph[node][i] == parent)
                continue;
            dfs(graph[node][i], node);
        }
    }
     
    // Driver code
    public static void Main(String []args)
    {
     
        // Weights of the node
        weight.Add( "");
        weight.Add( "abc");
        weight.Add( "aba");
        weight.Add( "bcb");
        weight.Add( "moh");
        weight.Add( "aa");
         
        for(int i = 0; i < 100; i++)
        graph.Add(new List<int>());
     
        // Edges of the tree
        graph[1].Add(2);
        graph[2].Add(3);
        graph[2].Add(4);
        graph[1].Add(5);
     
        dfs(1, 1);
     
        Console.WriteLine( cnt);
     
    }
}
 
// This code has been contributed by 29AjayKumar


Javascript




<script>
  
// Javascript implementation of the approach
let cnt = 0;
 
let graph = new Array(100);
let weight = new Array(100);
for(let i = 0; i < 100; i++)
{
    graph[i] = [];
    weight[i] = 0;
}
 
// Function that returns true
// if x is a palindrome
function isPalindrome(x)
{
    let n = x.length;
    for(let i = 0; i < n / 2; i++)
    {
        if (x[i] != x[n - 1 - i])
            return false;
    }
    return true;
}
 
// Function to perform dfs
function dfs(node, parent)
{
 
    // Weight of the current node
    let x = weight[node];
 
    // If the weight is a palindrome
    if (isPalindrome(x))
        cnt += 1;
         
    for(let to = 0; to < graph[node].length; to++)
    {
        if (graph[node][to] == parent)
            continue
             
        dfs(graph[node][to], node); 
    }
}
 
// Driver code
     
// Weights of the node
weight[1] = "abc";
weight[2] = "aba";
weight[3] = "bcb";
weight[4] = "moh";
weight[5] = "aa";
 
// Edges of the tree
graph[1].push(2);
graph[2].push(3);
graph[2].push(4);
graph[1].push(5);
 
dfs(1, 1);
 
document.write(cnt);
 
// This code is contributed by Dharanendra L V.
      
</script>


Output

3








Complexity Analysis: 

  • Time Complexity: O(N*Len) where Len is the maximum length of the weighted string of a node in the given tree. 
    In DFS, every node of the tree is processed once and hence the complexity due to the DFS is O(N) for N nodes in the tree. Also, processing of every node involves traversing the weighted string of that node once, thus adding a complexity of O(Len) where Len is the length of the weighted string. Therefore, the total time complexity is O(N*Len).
  • Auxiliary Space: O(1). 
    Any extra space is not required, so the space complexity is constant.

 New Approach :  (BFS)

  • This implementation uses a queue to perform a breadth-first search starting from the root node (node 1).
  •  It iteratively visits each node and checks if its weight is a palindrome.
  • If it is, the count is incremented.
  • The neighbors of each node are added to the queue for further exploration.
  • Finally, the count of nodes with palindrome weights is returned.

Bellow is the implementation of the approach ; 

C++




#include <iostream>
#include <deque>
#include <unordered_map>
#include <vector>
#include <string>
using namespace std;
 
bool is_palindrome(const string& x) {
    return x == string(x.rbegin(), x.rend());
}
 
int count_palindrome_nodes(const unordered_map<int, vector<int>>& graph, const vector<string>& weight) {
    int count = 0;
    deque<int> queue;
    queue.push_back(1); // Start the BFS from node 1 (root)
 
    while (!queue.empty()) {
        int node = queue.front();
        queue.pop_front();
 
        if (is_palindrome(weight[node])) {
            count++;
        }
 
        for (int neighbor : graph.at(node)) {
            queue.push_back(neighbor);
        }
    }
 
    return count;
}
 
int main() {
    // Weights of the nodes
    vector<string> weight = {"", "abc", "aba", "bcb", "moh", "aa"};
 
    // Edges of the tree
    unordered_map<int, vector<int>> graph = {
        {1, {2, 5}},
        {2, {3, 4}},
        {3, {}},
        {4, {}},
        {5, {}}
    };
 
    int result = count_palindrome_nodes(graph, weight);
    cout << result << endl;
 
    return 0;
}


Java




import java.util.*;
 
public class GFG {
 
    // Function to check if a string is a palindrome
    static boolean isPalindrome(String x)
    {
        return x.equals(
            new StringBuilder(x).reverse().toString());
    }
 
    // Function to count palindrome nodes in the tree
    static int countPalindromeNodes(
        HashMap<Integer, List<Integer> > graph,
        List<String> weight)
    {
        int count = 0;
        Deque<Integer> queue = new LinkedList<>();
        queue.add(1); // Start the BFS from node 1 (root)
 
        while (!queue.isEmpty()) {
            int node = queue.poll();
 
            if (isPalindrome(weight.get(node))) {
                count++;
            }
 
            for (int neighbor : graph.getOrDefault(
                     node, Collections.emptyList())) {
                queue.add(neighbor);
            }
        }
 
        return count;
    }
 
    public static void main(String[] args)
    {
        // Weights of the nodes
        List<String> weight = new ArrayList<>(Arrays.asList(
            "", "abc", "aba", "bcb", "moh", "aa"));
 
        // Edges of the tree
        HashMap<Integer, List<Integer> > graph
            = new HashMap<>();
        graph.put(1, new ArrayList<>(Arrays.asList(2, 5)));
        graph.put(2, new ArrayList<>(Arrays.asList(3, 4)));
        graph.put(3, new ArrayList<>());
        graph.put(4, new ArrayList<>());
        graph.put(5, new ArrayList<>());
 
        int result = countPalindromeNodes(graph, weight);
        System.out.println(result);
    }
}


Python




from collections import deque
 
def is_palindrome(x):
    return x == x[::-1]
 
def count_palindrome_nodes(graph, weight):
    count = 0
    queue = deque()
    queue.append(1# Start the BFS from node 1 (root)
 
    while queue:
        node = queue.popleft()
        if is_palindrome(weight[node]):
            count += 1
 
        for neighbor in graph[node]:
            queue.append(neighbor)
 
    return count
 
# Example usage:
 
# Weights of the nodes
weight = ["", "abc", "aba", "bcb", "moh", "aa"]
 
# Edges of the tree
graph = {
    1: [2, 5],
    2: [3, 4],
    3: [],
    4: [],
    5: []
}
 
result = count_palindrome_nodes(graph, weight)
print(result)


C#




using System;
using System.Collections.Generic;
 
class GFG
{
    static bool IsPalindrome(string x)
    {
        char[] charArray = x.ToCharArray();
        Array.Reverse(charArray);
        string reversed = new string(charArray);
        return x == reversed;
    }
 
    static int CountPalindromeNodes(Dictionary<int, List<int>> graph, List<string> weight)
    {
        int count = 0;
        Queue<int> queue = new Queue<int>();
        queue.Enqueue(1); // Start the BFS from node 1 (root)
 
        while (queue.Count > 0)
        {
            int node = queue.Dequeue();
 
            if (IsPalindrome(weight[node]))
            {
                count++;
            }
 
            foreach (int neighbor in graph[node])
            {
                queue.Enqueue(neighbor);
            }
        }
 
        return count;
    }
 
    static void Main(string[] args)
    {
        // Weights of the nodes
        List<string> weight = new List<string> { "", "abc", "aba", "bcb", "moh", "aa" };
 
        // Edges of the tree
        Dictionary<int, List<int>> graph = new Dictionary<int, List<int>>
        {
            { 1, new List<int> { 2, 5 } },
            { 2, new List<int> { 3, 4 } },
            { 3, new List<int>() },
            { 4, new List<int>() },
            { 5, new List<int>() }
        };
 
        int result = CountPalindromeNodes(graph, weight);
        Console.WriteLine(result);
    }
}


Javascript




// Function to check if a string is a palindrome
function is_palindrome(x) {
    return x === x.split("").reverse().join("");
}
 
 // Function to count palindrome nodes in the tree
function count_palindrome_nodes(graph, weight) {
    let count = 0;
    let queue = [];
    queue.push(1);  // Start the BFS from node 1 (root)
 
    while (queue.length > 0) {
        let node = queue.shift();
 
        if (is_palindrome(weight[node])) {
            count++;
        }
 
        let neighbors = graph[node];
        for (let neighbor of neighbors) {
            queue.push(neighbor);
        }
    }
 
    return count;
}
 
let weight = {
    1: "abc",
    2: "aba",
    3: "bcb",
    4: "moh",
    5: "aa"
};
 
// Edges of the tree
let graph = {
    1: [2, 5],
    2: [3, 4],
    3: [],
    4: [],
    5: []
};
 
let result = count_palindrome_nodes(graph, weight);
console.log(result);
 
// This Code Is Contributed By Shubham Tiwari


Output

3

Time Complexity: O(N)

Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments