Wednesday, November 20, 2024
Google search engine
HomeData Modelling & AICount Subarray of size K in given Array with given LCM

Count Subarray of size K in given Array with given LCM

Given an array arr[] of length N, the task is to find the number of subarrays where the least common multiple (LCM) of the subarray is equal to K and the size of that subarray is S.

Examples:

 Input: arr[] = {1, 2, 3, 4, 5, 6}, K = 6, S = 2
Output: 1
Explanation: {1, 2, 3 }, {2, 3}, {6}
There are 3 subarrays that can be generated from the main array with each having its LCM as 6. Out of which only {2, 3} is the length of 2. 

Input: arr[] = {3, 6, 2, 8, 4}, K = 6, S = 2
Output: 2
Explanation: {3, 6}, {6, 2}
There are only 2 subarrays having LCM as 6 and length as 2.

Approach: Implement the idea below to solve the problem

Maintain two loops, so as to calculate LCM starting from each index of arr[]. When the LCM get’s equal to K, check the length of the subarray.   

Steps were taken to solve the problem:

  • Initialize count = 0, to count the number of subarrays.
  • Maintain a loop to iterate through each index of array arr[].
    • Initialize LCM = arr[i], then again start a loop from that index to the end of array arr[].
      • Find the LCM of the lcm calculated till now for the current subarray and arr[j] as LCM =( a * b ) / GCD(a, b).
      • When LCM gets equal to given K and the size of the subarray is equal to S, increment in count variable by 1.
    • Whenever LCM gets greater than k, Break the inner loop. As the LCM is going to increase or stay same, it is never going to decrease.

Below is the implementation of the above approach.

C++




// Code to implement the approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Calculate LCM between a and b
int LCM(int a, int b)
{
    long prod = a * b;
    return prod / __gcd(a, b);
}
 
// Function to calculate number of subarrays
// where LCM is equal to k and
// size of subarray is S
int subarrayEqualsLCMSize(int arr[], int k, int S, int N)
{
    // Initialize variable to store number of subarrays
    int count = 0;
 
    // Generating all subarrays
    for (int i = 0; i < N; i++) {
        int lcm = arr[i];
        for (int j = i; j < N; j++) {
 
            // Function call to calculate lcm
            lcm = LCM(lcm, arr[j]);
 
            // Check the conditions given
            if (lcm == k && j - i + 1 == S)
                count++;
 
            // If LCM becomes larger than k,
            // break as LCM is never going to
            // decrease
            if (lcm > k)
 
                break;
        }
    }
 
    // Return the count of subarrays
    return count;
}
 
// Driver Code
int main()
{
    int arr[] = { 3, 2, 6, 8, 4 };
    int N = sizeof(arr) / sizeof(arr[0]);
    int K = 6, S = 2;
 
    // Function call
    cout << subarrayEqualsLCMSize(arr, K, S, N);
 
    return 0;
}


Java




// Java code to implement the approach
 
import java.io.*;
 
class GFG {
 
    // Function to calculate GCD
    static int gcd(int a, int b)
    {
        return b == 0 ? a : gcd(b, a % b);
    }
 
    // Calculate LCM between a and b
    static int LCM(int a, int b)
    {
        int prod = a * b;
        return prod / gcd(a, b);
    }
 
    // Function to calculate number of subarrays
    // where LCM is equal to k and
    // size of subarray is S
    static int subarrayEqualsLCMSize(int[] arr, int k,
                                     int S, int N)
    {
        // Initialize variable to store number of subarrays
        int count = 0;
 
        // Generating all subarrays
        for (int i = 0; i < N; i++) {
            int lcm = arr[i];
            for (int j = i; j < N; j++) {
                // Function call to calculate lcm
                lcm = LCM(lcm, arr[j]);
 
                // Check the conditions given
                if (lcm == k && j - i + 1 == S) {
                    count++;
                }
 
                // If LCM becomes larger than k,
                // break as LCM is never going to
                // decrease
                if (lcm > k) {
                    break;
                }
            }
        }
 
        // Return the count of subarrays
        return count;
    }
 
    public static void main(String[] args)
    {
        int[] arr = { 3, 2, 6, 8, 4 };
        int N = arr.length;
        int K = 6, S = 2;
 
        // Function call
        System.out.print(
            subarrayEqualsLCMSize(arr, K, S, N));
    }
}


Python




# Python code to implement the approach
 
# Function to calculate GCD
def gcd(a, b):
    if (b == 0):
        return a
    return gcd(b, a % b)
 
# Calculate LCM between a and b
def LCM(a, b):
    prod = a * b
    return prod / gcd(a, b)
 
# Function to calculate number of subarrays
# where LCM is equal to k and
# size of subarray is S
def subarrayEqualsLCMSize(arr, k, S, N):
 
    # Initialize variable to store number of subarrays
    count = 0
 
    # Generating all subarrays
    for i in range(0, N):
        lcm = arr[i]
        for j in range(i, N):
            # Function call to calculate lcm
            lcm = LCM(lcm, arr[j])
 
            # Check the conditions given
            if (lcm == k and j - i + 1 == S):
                count += 1
 
            # If LCM becomes larger than k,
            # break as LCM is never going to
            # decrease
            if (lcm > k):
                break
 
    # Return the count of subarrays
    return count
 
# Driver Code
arr = [3, 2, 6, 8, 4]
N = len(arr)
K = 6
S = 2
 
# Function call
print(subarrayEqualsLCMSize(arr, K, S, N))
 
# This code is contributed by Samim Hossain Mondal.


C#




// C# implementation
using System;
 
public class GFG {
 
  static int GCD(int num1, int num2)
  {
    int Remainder;
 
    while (num2 != 0) {
      Remainder = num1 % num2;
      num1 = num2;
      num2 = Remainder;
    }
 
    return num1;
  }
  // Calculate LCM between a and b
  public static int LCM(int a, int b)
  {
    long prod = a * b;
    return (int)(prod / GCD(a, b));
  }
 
  // Function to calculate number of subarrays
  // where LCM is equal to k and
  // size of subarray is S
  public static int
    subarrayEqualsLCMSize(int[] arr, int k, int S, int N)
  {
    // Initialize variable to store number of subarrays
    int count = 0;
 
    // Generating all subarrays
    for (int i = 0; i < N; i++) {
      int lcm = arr[i];
      for (int j = i; j < N; j++) {
 
        // Function call to calculate lcm
        lcm = LCM(lcm, arr[j]);
 
        // Check the conditions given
        if (lcm == k && j - i + 1 == S)
          count++;
 
        // If LCM becomes larger than k,
        // break as LCM is never going to
        // decrease
        if (lcm > k)
 
          break;
      }
    }
 
    // Return the count of subarrays
    return count;
  }
 
  static public void Main()
  {
    int[] arr = { 3, 2, 6, 8, 4 };
    int N = arr.Length;
    int K = 6, S = 2;
 
    // Function call
    Console.WriteLine(
      subarrayEqualsLCMSize(arr, K, S, N));
  }
}
 
// This code is contributed by ksam24000


Javascript




function GCD(num1, num2)
  {
    let Remainder;
 
    while (num2 != 0) {
      Remainder = num1 % num2;
      num1 = num2;
      num2 = Remainder;
    }
 
    return num1;
  }
  // Calculate LCM between a and b
  function LCM( a, b)
  {
    let prod = a * b;
    return Math.floor(prod / GCD(a, b));
  }
 
  // Function to calculate number of subarrays
  // where LCM is equal to k and
  // size of subarray is S
function
    subarrayEqualsLCMSize(arr, k,  S, N)
  {
    // Initialize variable to store number of subarrays
    let count = 0;
 
    // Generating all subarrays
    for (let i = 0; i < N; i++) {
      let lcm = arr[i];
      for (let j = i; j < N; j++) {
 
        // Function call to calculate lcm
        lcm = LCM(lcm, arr[j]);
 
        // Check the conditions given
        if (lcm == k && j - i + 1 == S)
          count++;
 
        // If LCM becomes larger than k,
        // break as LCM is never going to
        // decrease
        if (lcm > k)
 
          break;
      }
    }
 
    // Return the count of subarrays
    return count;
  }
 
let arr = [ 3, 2, 6, 8, 4 ];
let N = arr.length;
let K = 6, S = 2;
 
// Function call
console.log(subarrayEqualsLCMSize(arr, K, S, N));
 
// This code is contributed by akashish__


Output

2

Time Complexity: O(N2 * Log N)
Auxiliary Space: O(1)

Related Articles:

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
09 Dec, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments