Tuesday, November 26, 2024
Google search engine
HomeData Modelling & AICount numbers in a range having GCD of powers of prime factors...

Count numbers in a range having GCD of powers of prime factors equal to 1

Given a range represented by two positive integers L and R. The task is to count the numbers from the range having GCD of powers of prime factors equal to 1. In other words, if a number X has its prime factorization of the form 2p1 * 3p2 * 5p3 * … then the GCD of p1, p2, p3, … should be equal to 1

Examples:

Input: L = 2, R = 5 
Output: 3 2, 3, and 5 are the required numbers having GCD of powers of prime factors equal to 1. 2 = 21 3 = 31 5 = 51 

Input: L = 13, R = 20 
Output: 7

Prerequisites: Perfect Powers in a Range

Naive Approach: Iterate over all numbers from L to R and prime factorise each number then calculate the GCD of powers of the prime factors. If the GCD = 1, increment a count variable and finally return it as the answer. 

Efficient Approach: The key idea here is to notice that the valid numbers are not perfect powers since the powers of prime factors number are in such a way that their GCD is always greater than 1. In other words, all perfect powers are not valid numbers. 

For e.g.

2500 is perfect power whose prime factorization is 2500 = 22 * 54. Now the GCD of (2, 4) = 2 which is greater than 1. If some number has xth power of a factor in its prime factorization, then the powers of other prime factors will have to be multiples of x in order for the number to be invalid.

Hence, we can find the total number of perfect powers lying in the range and subtract it from the total numbers. Below is the implementation of the above approach: 

CPP




// C++ implementation of the approach
#include <bits/stdc++.h>
 
using namespace std;
 
#define N 1000005
#define MAX 1e18
 
// Vector to store powers greater than 3
vector<long int> powers;
 
// Set to store perfect squares
set<long int> squares;
 
// Set to store powers other than perfect squares
set<long int> s;
 
void powersPrecomputation()
{
    for (long int i = 2; i < N; i++) {
 
        // Pushing squares
        squares.insert(i * i);
 
        // if the values is already a perfect square means
        // present in the set
        if (squares.find(i) != squares.end())
            continue;
 
        long int temp = i;
 
        // Run loop until some power of current number
        // doesn't exceed MAX
        while (i * i <= MAX / temp) {
            temp *= (i * i);
 
            // Pushing only odd powers as even power of a number
            // can always be expressed as a perfect square
            // which is already present in set squares
            s.insert(temp);
        }
    }
 
    // Inserting those sorted
    // values of set into a vector
    for (auto x : s)
        powers.push_back(x);
}
 
long int calculateAnswer(long int L, long int R)
{
 
    // Precompute the powers
    powersPrecomputation();
 
    // Calculate perfect squares in
    // range using sqrtl function
    long int perfectSquares = floor(sqrtl(R)) - floor(sqrtl(L - 1));
 
    // Calculate upper value of R
    // in vector using binary search
    long int high = upper_bound(powers.begin(),
                                powers.end(), R)
                    - powers.begin();
 
    // Calculate lower value of L
    // in vector using binary search
    long int low = lower_bound(powers.begin(),
                               powers.end(), L)
                   - powers.begin();
 
    // Calculate perfect powers
    long perfectPowers = perfectSquares + (high - low);
 
    // Compute final answer
    long ans = (R - L + 1) - perfectPowers;
    return ans;
}
 
// Driver Code
int main()
{
    long int L = 13, R = 20;
    cout << calculateAnswer(L, R);
    return 0;
}


Java




// Java implementation of above idea
import java.util.*;
 
class GFG
{
 
    static int N = 1000005;
    static long MAX = (long) 1e18;
 
    // Vector to store powers greater than 3
    static Vector<Long> powers = new Vector<>();
 
    // Set to store perfect squares
    static TreeSet<Long> squares = new TreeSet<>();
 
    // Set to store powers other than perfect squares
    static TreeSet<Long> s = new TreeSet<>();
 
    static void powersPrecomputation()
    {
        for (long i = 2; i < N; i++)
        {
 
            // Pushing squares
            squares.add(i * i);
 
            // if the values is already a perfect square means
            // present in the set
            if (squares.contains(i))
                continue;
 
            long temp = i;
 
            // Run loop until some power of current number
            // doesn't exceed MAX
            while (i * i <= MAX / temp)
            {
                temp *= (i * i);
 
                // Pushing only odd powers as even power of a number
                // can always be expressed as a perfect square
                // which is already present in set squares
                s.add(temp);
            }
        }
 
        // Inserting those sorted
        // values of set into a vector
        for (long x : s)
            powers.add(x);
    }
 
    static long calculateAnswer(long L, long R)
    {
 
        // Precompute the powers
        powersPrecomputation();
 
        // Calculate perfect squares in
        // range using sqrtl function
        long perfectSquares = (long) (Math.floor(Math.sqrt(R)) -
                                Math.floor(Math.sqrt(L - 1)));
 
        // Calculate upper value of R
        // in vector using binary search
        long high = Collections.binarySearch(powers, R);
 
        // Calculate lower value of L
        // in vector using binary search
        long low = Collections.binarySearch(powers, L);
 
        // Calculate perfect powers
        long perfectPowers = perfectSquares + (high - low);
 
        // Compute final answer
        long ans = (R - L + 1) - perfectPowers;
        return ans;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        long L = 13, R = 20;
        System.out.println(calculateAnswer(L, R));
    }
}
 
// This code is contributed by
// sanjeev2552


Python3




# Python3 implementation of the approach
from bisect import bisect as upper_bound
from bisect import bisect_left as lower_bound
from math import floor
N = 1000005
MAX = 10**18
 
# Vector to store powers greater than 3
powers = []
 
# Set to store perfect squares
squares = dict()
 
# Set to store powers other than perfect squares
s = dict()
 
def powersPrecomputation():
 
    for i in range(2, N):
 
        # Pushing squares
        squares[i * i] = 1
 
        # if the values is already a perfect square means
        # present in the set
        if (i not in squares.keys()):
            continue
 
        temp = i
 
        # Run loop until some power of current number
        # doesn't exceed MAX
        while (i * i <= (MAX // temp)):
            temp *= (i * i)
 
            # Pushing only odd powers as even power of a number
            # can always be expressed as a perfect square
            # which is already present in set squares
            s[temp]=1
 
    # Inserting those sorted
    # values of set into a vector
    for x in s:
        powers.append(x)
 
def calculateAnswer(L, R):
 
    # Precompute the powers
    powersPrecomputation()
 
    # Calculate perfect squares in
    # range using sqrtl function
    perfectSquares = floor((R)**(.5)) - floor((L - 1)**(.5))
 
    # Calculate upper value of R
    # in vector using binary search
    high = upper_bound(powers,R)
 
    # Calculate lower value of L
    # in vector using binary search
    low = lower_bound(powers,L)
 
    # Calculate perfect powers
    perfectPowers = perfectSquares + (high - low)
 
    # Compute final answer
    ans = (R - L + 1) - perfectPowers
 
    return ans
 
 
# Driver Code
 
L = 13
R = 20
print(calculateAnswer(L, R))
 
# This code is contributed by mohit kumar 29


C#




// C# implementation of above idea
using System;
using System.Collections.Generic;
 
public class GFG
{
 
    static int N = 100005;
    static long MAX = (long) 1e18;
 
    // List to store powers greater than 3
    static List<long> powers = new List<long>();
 
    // Set to store perfect squares
    static HashSet<long> squares = new HashSet<long>();
 
    // Set to store powers other than perfect squares
    static HashSet<long> s = new HashSet<long>();
 
    static void powersPrecomputation()
    {
        for (long i = 2; i < N; i++)
        {
 
            // Pushing squares
            squares.Add(i * i);
 
            // if the values is already a perfect square means
            // present in the set
            if (squares.Contains(i))
                continue;
 
            long temp = i;
 
            // Run loop until some power of current number
            // doesn't exceed MAX
            while (i * i <= MAX / temp)
            {
                temp *= (i * i);
 
                // Pushing only odd powers as even power of a number
                // can always be expressed as a perfect square
                // which is already present in set squares
                s.Add(temp);
            }
        }
 
        // Inserting those sorted
        // values of set into a vector
        foreach (long x in s)
            powers.Add(x);
    }
 
    static long calculateAnswer(long L, long R)
    {
 
        // Precompute the powers
        powersPrecomputation();
 
        // Calculate perfect squares in
        // range using sqrtl function
        long perfectSquares = (long) (Math.Floor(Math.Sqrt(R)) -
                                Math.Floor(Math.Sqrt(L - 1)));
 
        // Calculate upper value of R
        // in vector using binary search
        long high = Array.BinarySearch(powers.ToArray(), R);
 
        // Calculate lower value of L
        // in vector using binary search
        long low = Array.BinarySearch(powers.ToArray(), L);
 
        // Calculate perfect powers
        long perfectPowers = perfectSquares + (high - low);
 
        // Compute readonly answer
        long ans = (R - L + 1) - perfectPowers;
        return ans;
    }
 
    // Driver Code
    public static void Main(String[] args)
    {
        long L = 13, R = 20;
        Console.WriteLine(calculateAnswer(L, R));
    }
}
 
// This code is contributed by 29AjayKumar


Javascript




// JavaScript implementation of the approach
 
let N = 1000005;
let MAX = 1e18;
 
// Vector to store powers greater than 3
let powers = [];
 
// Set to store perfect squares
let squares = new Set();
 
// Set to store powers other than perfect squares
let s = new Set();
 
function upper_bound(arr, value)
{
    for (let i = 0; i < arr.length; i++)
    {
        if (arr[i] > value)
            return i;
    }
    return arr.length;
}
 
function lower_bound(arr, value)
{
    for (let i = 0; i < arr.length; i++)
    {
        if (arr[i] >= value)
            return i;
    }
    return arr.length;
}
 
function powersPrecomputation()
{
    for (let i = 2; i < N; i++) {
 
        // Pushing squares
        squares.add(i * i);
 
        // if the values is already a perfect square means
        // present in the set
        if (squares.has(i))
            continue;
 
        let temp = i;
 
        // Run loop until some power of current number
        // doesn't exceed MAX
        while (i * i <= MAX / temp) {
            temp *= (i * i);
 
            // Pushing only odd powers as even power of a number
            // can always be expressed as a perfect square
            // which is already present in set squares
            s.add(temp);
        }
    }
 
    // Inserting those sorted
    // values of set into a vector
    for (let x of s)
        powers.push(x);
}
 
function calculateAnswer(L, R)
{
 
    // Precompute the powers
    powersPrecomputation();
 
    // Calculate perfect squares in
    // range using sqrtl function
    let perfectSquares = Math.floor(Math.sqrt(R)) - Math.floor(Math.sqrt(L - 1));
 
    // Calculate upper value of R
    // in vector using binary search
    let high = upper_bound(powers, R);
 
    // Calculate lower value of L
    // in vector using binary search
    let low = lower_bound(powers, L);
 
    // Calculate perfect powers
    let perfectPowers = perfectSquares + (high - low);
 
    // Compute final answer
    let ans = (R - L + 1) - perfectPowers;
    return ans;
}
 
 
// Driver Code
let L = 13, R = 20;
console.log(calculateAnswer(L, R));
 
 
// This code is contributed by phasing17


Output:

7

Time Complexity: O(N * log N), to iterate over N
Auxiliary Space: O(N), since N extra space has been taken.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments