Given an integer N, the task is to count the number of binary strings possible of length N such that they don’t contain “111” as a substring. The answer could be large so print answer modulo 109 + 7.
Examples:
Input: N = 3
Output: 7
All possible substring are “000”, “001”,
“010”, “011”, “100”, “101” and “110”.
“111” is not a valid string.
Input N = 16
Output: 19513
Approach: Dynamic programming can be used to solve this problem. Create a dp[][] array where dp[i][j] will store the count of possible substrings such that 1 appears j times consecutively upto the ith index. Now, the recurrence relations will be:
dp[i][0] = dp[i – 1][0] + dp[i – 1][1] + dp[i – 1][2]
dp[i][1] = dp[i – 1][0]
dp[i][2] = dp[i – 1][1]
And the base cases will be dp[1][0] = 1, dp[1][1] = 1 and dp[1][2] = 0. Now, the required count of strings will be dp[N][0] + dp[N][1] + dp[N][2].
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; const long MOD = 1000000007; // Function to return the count // of all possible valid strings long countStrings( long N) { long dp[N + 1][3]; // Fill 0's in the dp array memset (dp, 0, sizeof (dp)); // Base cases dp[1][0] = 1; dp[1][1] = 1; dp[1][2] = 0; for ( int i = 2; i <= N; i++) { // dp[i][j] = number of possible strings // such that '1' just appeared consecutively // j times upto the ith index dp[i][0] = (dp[i - 1][0] + dp[i - 1][1] + dp[i - 1][2]) % MOD; // Taking previously calculated value dp[i][1] = dp[i - 1][0] % MOD; dp[i][2] = dp[i - 1][1] % MOD; } // Taking all possible cases that // can appear at the Nth position long ans = (dp[N][0] + dp[N][1] + dp[N][2]) % MOD; return ans; } // Driver code int main() { long N = 3; cout << countStrings(N); return 0; } |
Java
// Java implementation of the approach class GFG { final static int MOD = 1000000007 ; // Function to return the count // of all possible valid strings static long countStrings( int N) { int i, j; int dp[][] = new int [N + 1 ][ 3 ]; // Fill 0's in the dp array for (i = 0 ; i < N + 1 ; i++) { for (j = 9 ; j < 3 ; j ++) { dp[i][j] = 0 ; } } // Base cases dp[ 1 ][ 0 ] = 1 ; dp[ 1 ][ 1 ] = 1 ; dp[ 1 ][ 2 ] = 0 ; for (i = 2 ; i <= N; i++) { // dp[i][j] = number of possible strings // such that '1' just appeared consecutively // j times upto the ith index dp[i][ 0 ] = (dp[i - 1 ][ 0 ] + dp[i - 1 ][ 1 ] + dp[i - 1 ][ 2 ]) % MOD; // Taking previously calculated value dp[i][ 1 ] = dp[i - 1 ][ 0 ] % MOD; dp[i][ 2 ] = dp[i - 1 ][ 1 ] % MOD; } // Taking all possible cases that // can appear at the Nth position int ans = (dp[N][ 0 ] + dp[N][ 1 ] + dp[N][ 2 ]) % MOD; return ans; } // Driver code public static void main (String[] args) { int N = 3 ; System.out.println(countStrings(N)); } } // This code is contributed by AnkitRai01 |
Python3
# Python3 implementation of the approach MOD = 1000000007 # Function to return the count # of all possible valid strings def countStrings(N): # Initialise and fill 0's in the dp array dp = [[ 0 ] * 3 for i in range (N + 1 )] # Base cases dp[ 1 ][ 0 ] = 1 ; dp[ 1 ][ 1 ] = 1 ; dp[ 1 ][ 2 ] = 0 ; for i in range ( 2 , N + 1 ): # dp[i][j] = number of possible strings # such that '1' just appeared consecutively # j times upto the ith index dp[i][ 0 ] = (dp[i - 1 ][ 0 ] + dp[i - 1 ][ 1 ] + dp[i - 1 ][ 2 ]) % MOD # Taking previously calculated value dp[i][ 1 ] = dp[i - 1 ][ 0 ] % MOD dp[i][ 2 ] = dp[i - 1 ][ 1 ] % MOD # Taking all possible cases that # can appear at the Nth position ans = (dp[N][ 0 ] + dp[N][ 1 ] + dp[N][ 2 ]) % MOD return ans # Driver code if __name__ = = '__main__' : N = 3 print (countStrings(N)) # This code is contributed by ashutosh450 |
C#
// C# implementation of the above approach using System; class GFG { static readonly int MOD = 1000000007; // Function to return the count // of all possible valid strings static long countStrings( int N) { int i, j; int [,]dp = new int [N + 1, 3]; // Fill 0's in the dp array for (i = 0; i < N + 1; i++) { for (j = 9; j < 3; j ++) { dp[i, j] = 0; } } // Base cases dp[1, 0] = 1; dp[1, 1] = 1; dp[1, 2] = 0; for (i = 2; i <= N; i++) { // dp[i,j] = number of possible strings // such that '1' just appeared consecutively // j times upto the ith index dp[i, 0] = (dp[i - 1, 0] + dp[i - 1, 1] + dp[i - 1, 2]) % MOD; // Taking previously calculated value dp[i, 1] = dp[i - 1, 0] % MOD; dp[i, 2] = dp[i - 1, 1] % MOD; } // Taking all possible cases that // can appear at the Nth position int ans = (dp[N, 0] + dp[N, 1] + dp[N, 2]) % MOD; return ans; } // Driver code public static void Main (String[] args) { int N = 3; Console.WriteLine(countStrings(N)); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // javascript implementation of the approach var MOD = 1000000007; // Function to return the count // of all possible valid strings function countStrings(N) { var i, j; var dp = Array(N+1).fill(0).map(x => Array(3).fill(0)); // Fill 0's in the dp array for (i = 0; i < N + 1; i++) { for (j = 9; j < 3 ; j ++) { dp[i][j] = 0; } } // Base cases dp[1][0] = 1; dp[1][1] = 1; dp[1][2] = 0; for (i = 2; i <= N; i++) { // dp[i][j] = number of possible strings // such that '1' just appeared consecutively // j times upto the ith index dp[i][0] = (dp[i - 1][0] + dp[i - 1][1] + dp[i - 1][2]) % MOD; // Taking previously calculated value dp[i][1] = dp[i - 1][0] % MOD; dp[i][2] = dp[i - 1][1] % MOD; } // Taking all possible cases that // can appear at the Nth position var ans = (dp[N][0] + dp[N][1] + dp[N][2]) % MOD; return ans; } // Driver code var N = 3; document.write(countStrings(N)); // This code is contributed by 29AjayKumar </script> |
7
Time Complexity: O(N)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!