Sunday, November 17, 2024
Google search engine
HomeData Modelling & AICount maximum concatenation of pairs from given array that are divisible by...

Count maximum concatenation of pairs from given array that are divisible by 3

Given an array arr[] of size N, the task is to count the pairs whose concatenation of elements is divisible by 3 and each array element present in at most one pair.

Examples:

Input: arr[] = { 5, 3, 2, 8, 7 } 
Output:
Explanation: 
Possible pairs whose concatenation is divisible by 3 are { 27, 72, 78, 87 }, but the array element arr[4] will be present in at most one pair. Therefore, the required output is 1

Input: arr[] = { 10, 6, 3, 7, 2 } 
Output: 2

Naive approach: The simplest approach to solve this problem is to traverse the array and generate all possible pairs of the given array. For each pair check if the concatenation of elements of the pair is divisible by 3 or not. If found to be true, then mark both the element as false, so that both the elements of the pair can’t be present in more than one pair.

Below is the implementation of the naive approach:

C++




// C++ program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to count pairs whose concatenation
// is divisible by 3 and each element can be
// present in at most one pair
int countDivBy3InArray(int arr[], int N)
{
      
    // Stores count pairs whose concatenation
    // is divisible by 3 and each element can
    // be present in at most one pair
    int ans = 0;
      
    // Check if an element present
    // in any pair or not
    bool taken[N];
    memset(taken, false, sizeof(taken));
      
    // Generate all possible pairs
    for(int i = 0; i < N; i++)
    {
          
        // If the element already
        // present in a pair
        if (taken[i] == true)
        {
            continue;
        }
        for(int j = i + 1; j < N; j++)
        {
              
            // If the element already
            // present in a pair
            if (taken[j] == true)
            {
                continue;
            }
              
            // If concatenation of elements
            // is divisible by 3
            if (stoi(to_string(arr[i]) +
                    to_string(arr[j])) % 3 == 0 ||
                stoi(to_string(arr[j]) +
                    to_string(arr[i])) % 3 == 0)
            {
                  
                // Update ans
                ans += 1;
                  
                // Mark i is True
                taken[i] = true;
                  
                // Mark j is True
                taken[j] = true;
            }
        }
    }
    return ans;
}
 
int main()
{
    int arr[] = { 5, 3, 2, 8, 7 };
    int N = sizeof(arr) / sizeof(arr[0]);
      
    // To display the result
    cout << countDivBy3InArray(arr, N);
 
    return 0;
}


Java




// Java program to implement
// the above approach
import java.io.*;
import java.util.Arrays;
 
class GFG{
 
// Function to count pairs whose concatenation
// is divisible by 3 and each element can be
// present in at most one pair
public static int countDivBy3InArray(int[] arr)
{
     
    // Stores count pairs whose concatenation
    // is divisible by 3 and each element can
    // be present in at most one pair
    int ans = 0;
     
    // Check if an element present
    // in any pair or not
    boolean[] taken = new boolean[arr.length];
    Arrays.fill(taken, false);
     
    // Generate all possible pairs
    for(int i = 0; i < arr.length; i++)
    {
         
        // If the element already
        // present in a pair
        if (taken[i] == true)
        {
            continue;
        }
        for(int j = i + 1; j < arr.length; j++)
        {
             
            // If the element already
            // present in a pair
            if (taken[j] == true)
            {
                continue;
            }
             
            // If concatenation of elements
            // is divisible by 3
            if (Integer.parseInt(
                    Integer.toString(arr[i]) +
                    Integer.toString(arr[j])) % 3 == 0 ||
                Integer.parseInt(
                    Integer.toString(arr[j]) +
                    Integer.toString(arr[i])) % 3 == 0)
            {
                 
                // Update ans
                ans += 1;
                 
                // Mark i is True
                taken[i] = true;
                 
                // Mark j is True
                taken[j] = true;
            }
        }
    }
    return ans;
}
 
// Driver Code
public static void main(String[] args)
{
    int[] arr = { 5, 3, 2, 8, 7 };
     
    // To display the result
    System.out.println(countDivBy3InArray(arr));
}
}
 
// This code is contributed by aditya7409


Python3




# Python3 program to implement
# the above approach
 
 
# Function to count pairs whose concatenation is
# divisible by 3 and each element can be present
# in at most one pair
def countDivBy3InArray(arr):
     
     
    # Stores count pairs whose concatenation is
    # divisible by 3 and each element can be present
    # in at most one pair
    ans = 0
     
     
    # Check if an element present
    # in any pair or not
    taken = [False] * len(arr)
 
    # Generate all possible pairs
    for i in range(len(arr)):
         
         
        # If the element already
        # present in a pair
        if taken[i]:
            continue
         
        for j in range(i + 1, len(arr)):
             
             
            # If the element already
            # present in a pair
            if taken[j]:
                continue
             
             
            # If concatenation of elements
            # is divisible by 3
            if (not int(str(arr[i])+str(arr[j])) % 3 or
                 not int(str(arr[j])+str(arr[i])) % 3):
                      
                      
                # Update ans    
                ans += 1
                 
                 
                # Mark i is True
                taken[i] = True
                 
                 
                # Mark j is True
                taken[j] = True
    return ans
 
 
 
# Driver Code
arr = [5, 3, 2, 8, 7]
 
 
# To display the result
print(countDivBy3InArray(arr))


C#




// C# program to implement
// the above approach
using System;
public class GFG
{
 
  // Function to count pairs whose concatenation
  // is divisible by 3 and each element can be
  // present in at most one pair
  public static int countDivBy3InArray(int[] arr)
  {
 
    // Stores count pairs whose concatenation
    // is divisible by 3 and each element can
    // be present in at most one pair
    int ans = 0;
 
    // Check if an element present
    // in any pair or not
    bool[] taken = new bool[arr.Length];
 
    // Generate all possible pairs
    for(int i = 0; i < arr.Length; i++)
    {
 
      // If the element already
      // present in a pair
      if (taken[i] == true)
      {
        continue;
      }
      for(int j = i + 1; j < arr.Length; j++)
      {
 
        // If the element already
        // present in a pair
        if (taken[j] == true)
        {
          continue;
        }
 
        // If concatenation of elements
        // is divisible by 3
        if (Int32.Parse(
          (arr[i]).ToString() +
          (arr[j]).ToString()) % 3 == 0 ||
            Int32.Parse(
              (arr[j]).ToString() +
              (arr[i]).ToString()) % 3 == 0)
        {
 
          // Update ans
          ans += 1;
 
          // Mark i is True
          taken[i] = true;
 
          // Mark j is True
          taken[j] = true;
        }
      }
    }
    return ans;
  }
 
  // Driver Code
  public static void Main(String[] args)
  {
    int[] arr = { 5, 3, 2, 8, 7 };
 
    // To display the result
    Console.WriteLine(countDivBy3InArray(arr));
  }
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
    // Javascript program to implement the above approach
     
    // Function to count pairs whose concatenation
    // is divisible by 3 and each element can be
    // present in at most one pair
    function countDivBy3InArray(arr)
    {
 
      // Stores count pairs whose concatenation
      // is divisible by 3 and each element can
      // be present in at most one pair
      let ans = 0;
 
      // Check if an element present
      // in any pair or not
      let taken = new Array(arr.length);
      taken.fill(false);
 
      // Generate all possible pairs
      for(let i = 0; i < arr.length; i++)
      {
 
        // If the element already
        // present in a pair
        if (taken[i] == true)
        {
          continue;
        }
        for(let j = i + 1; j < arr.length; j++)
        {
 
          // If the element already
          // present in a pair
          if (taken[j] == true)
          {
            continue;
          }
 
          // If concatenation of elements
          // is divisible by 3
          if (parseInt((arr[i]).toString() + (arr[j]).toString(), 10) % 3 == 0 ||
              parseInt((arr[j]).toString() + (arr[i]).toString(), 10) % 3 == 0)
          {
 
            // Update ans
            ans += 1;
 
            // Mark i is True
            taken[i] = true;
 
            // Mark j is True
            taken[j] = true;
          }
        }
      }
      return ans;
    }
     
    let arr = [ 5, 3, 2, 8, 7 ];
  
    // To display the result
    document.write(countDivBy3InArray(arr));
   
</script>


Output: 

1

 

Time Complexity: O(N2) 
Auxiliary Space: O(N)

Efficient approach: The above approach can be optimized by using the concept of checking a number is divisible by 3 or not. Follow the steps below to solve the problem:

  • Initialize three variables, say rem0, rem1 and rem2, to store the count of array elements whose remainder is 0, 1 and 2 respectively when divided by 3.
  • Traverse the array and check for the following conditions: 
    • If arr[i] %3 == 0, then update cnt0 += 1.
    • If arr[i] %3 == 1, then update cnt1 += 1.
    • If arr[i] %3 == 2, then update cnt2 += 1.
  • Finally, print the count of pairs, i.e. (rem0 / 2 + min(rem1, rem2)).

Below is the implementation of the above approach:

C++




// C++ program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to count pairs whose concatenation is
// divisible by 3 and each element can be present
// in at most one pair
int countDiv(int arr[], int n)
{
 
    // Stores count of array elements whose
    // remainder is 0 by taking modulo by 3
    int rem0 = 0;
 
    // Stores count of array elements whose
    // remainder is 1 by taking modulo by 3
    int rem1 = 0;
 
    // Stores count of array elements whose
    // remainder is 2 by taking modulo by 3
    int rem2 = 0;
 
    // Traverse the array
    for(int i = 0; i < n; i++)
    {
         
        // Stores sum of digits
        // of arr[i]
        int digitSum = 0;
 
        // Update digitSum
        digitSum += arr[i];
 
        // If remainder of digitSum by
        // by taking modulo 3 is 0
        if (digitSum % 3 == 0)
        {
             
            // Update rem0
            rem0 += 1;
        }
 
        // If remainder of digitSum by
        // by taking modulo 3 is 1
        else if (digitSum % 3 == 1)
        {
             
            // Update rem1
            rem1 += 1;
        }
        else
        {
             
            // Update rem2
            rem2 += 1;
        }
    }
    return (rem0 / 2 + min(rem1, rem2));
}
 
// Driver code
int main()
{
    int arr[] = { 5, 3, 2, 8, 7 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    // To display the result
    cout << (countDiv(arr, n));
}
 
// This code is contributed by ukasp


Java




// Java program to implement
// the above approach
public class GFG
{
   
  // Function to count pairs whose concatenation is
  // divisible by 3 and each element can be present
  // in at most one pair
  static int countDiv(int[] arr)
  {
 
    // Stores count of array elements whose
    // remainder is 0 by taking modulo by 3
    int rem0 = 0;
 
    // Stores count of array elements whose
    // remainder is 1 by taking modulo by 3
    int rem1 = 0;
 
    // Stores count of array elements whose
    // remainder is 2 by taking modulo by 3
    int rem2 = 0;
 
    // Traverse the array
    for(int i : arr)
    {
 
      // Stores sum of digits
      // of arr[i]
      int digitSum = 0;
 
      // Update digitSum
      digitSum += i;
 
      // If remainder of digitSum by
      // by taking modulo 3 is 0
      if(digitSum % 3 == 0)
      {
 
        // Update rem0
        rem0 += 1;
      }
 
      // If remainder of digitSum by
      // by taking modulo 3 is 1
      else if(digitSum % 3 == 1)
      {
 
        // Update rem1
        rem1 += 1;
      }
      else
      {
 
        // Update rem2
        rem2 += 1;
      }
    }
 
    return (rem0 / 2 + Math.min(rem1, rem2));
  }
 
  // Driver code
  public static void main(String[] args) {
    int[] arr = {5, 3, 2, 8, 7};
 
    // To display the result
    System.out.println(countDiv(arr));
  }
}
 
// This code is contributed by divyesh072019.


Python3




# Python3 program to implement
# the above approach
 
 
# Function to count pairs whose concatenation is
# divisible by 3 and each element can be present
# in at most one pair
def countDiv(arr):
     
     
    # Stores count of array elements whose
    # remainder is 0 by taking modulo by 3
    rem0 = 0
     
    # Stores count of array elements whose
    # remainder is 1 by taking modulo by 3
    rem1 = 0
     
     
    # Stores count of array elements whose
    # remainder is 2 by taking modulo by 3
    rem2 = 0
     
    # Traverse the array
    for i in arr:
         
       # Stores sum of digits
       # of arr[i]
        digitSum = 0
         
        for digit in str(i):
             
            # Update digitSum
            digitSum += int(digit)
         
        # If remainder of digitSum by
        # by taking modulo 3 is 0
        if digitSum % 3 == 0:
             
            # Update rem0
            rem0 += 1
             
        # If remainder of digitSum by
        # by taking modulo 3 is 1
        elif digitSum % 3 == 1:
             
            # Update rem1
            rem1 += 1
        else:
             
            # Update rem2
            rem2 += 1
             
             
    return (rem0 // 2 + min(rem1, rem2))
 
 
# Driver Code
arr = [5, 3, 2, 8, 7]
 
 
# To display the result
print(countDiv(arr))


C#




// C# program to implement
// the above approach
using System;
using System.Collections.Generic;
class GFG {
 
  // Function to count pairs whose concatenation is
  // divisible by 3 and each element can be present
  // in at most one pair
  static int countDiv(int[] arr)
  {
     
    // Stores count of array elements whose
    // remainder is 0 by taking modulo by 3
    int rem0 = 0;
 
    // Stores count of array elements whose
    // remainder is 1 by taking modulo by 3
    int rem1 = 0;
 
    // Stores count of array elements whose
    // remainder is 2 by taking modulo by 3
    int rem2 = 0;
 
    // Traverse the array
    foreach(int i in arr)
    {
       
      // Stores sum of digits
      // of arr[i]
      int digitSum = 0;
 
      // Update digitSum
      digitSum += i;
 
      // If remainder of digitSum by
      // by taking modulo 3 is 0
      if(digitSum % 3 == 0)
      {
         
        // Update rem0
        rem0 += 1;
      }
 
      // If remainder of digitSum by
      // by taking modulo 3 is 1
      else if(digitSum % 3 == 1)
      {
         
        // Update rem1
        rem1 += 1;
      }
      else
      {
         
        // Update rem2
        rem2 += 1;
      }
    }
 
    return (rem0 / 2 + Math.Min(rem1, rem2));
  }
 
  // Driver code
  static void Main() {
    int[] arr = {5, 3, 2, 8, 7};
 
 
    // To display the result
    Console.Write(countDiv(arr));
  }
}
 
// This code is contributed by divyeshrabadiya07.


Javascript




<script>
 
    // Javascript program to implement
    // the above approach
     
    // Function to count pairs
    // whose concatenation is
    // divisible by 3 and each
    // element can be present
    // in at most one pair
    function countDiv(arr)
    {
 
      // Stores count of array elements whose
      // remainder is 0 by taking modulo by 3
      let rem0 = 0;
 
      // Stores count of array elements whose
      // remainder is 1 by taking modulo by 3
      let rem1 = 0;
 
      // Stores count of array elements whose
      // remainder is 2 by taking modulo by 3
      let rem2 = 0;
 
      // Traverse the array
      for(let i = 0; i < arr.length; i++)
      {
 
        // Stores sum of digits
        // of arr[i]
        let digitSum = 0;
 
        // Update digitSum
        digitSum += arr[i];
 
        // If remainder of digitSum by
        // by taking modulo 3 is 0
        if(digitSum % 3 == 0)
        {
 
          // Update rem0
          rem0 += 1;
        }
 
        // If remainder of digitSum by
        // by taking modulo 3 is 1
        else if(digitSum % 3 == 1)
        {
 
          // Update rem1
          rem1 += 1;
        }
        else
        {
 
          // Update rem2
          rem2 += 1;
        }
      }
 
      return (parseInt(rem0 / 2, 10) +
      Math.min(rem1, rem2));
    }
     
    let arr = [5, 3, 2, 8, 7];
  
  
    // To display the result
    document.write(countDiv(arr));
   
</script>


Output: 

1

 

Time Complexity: O(N) 
Auxiliary Space: O()

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments