Given an array arr[] consisting of N integers and a positive integer K, the task is to find the number of subarrays of size K whose average is greater than its median and both the average, median must be either prime or non-prime.
Examples:
Input: arr[] = {2, 4, 3, 5, 6}, K = 3
Output: 2
Explanation:
Following are the subarrays that satisfy the given conditions:
- {2, 4, 3}: The median of this subarray is 3, and the average is (2 + 4 + 3)/3 = 3. As, both the median and average are prime and average >= median. So the count this subarray.
- {4, 3, 5}: The median of this subarray is 4, and the average is (4 + 3 + 5)/3 = 4. As, both the median and average are non-prime and average >= median. So the count this subarray.
Therefore, the total number of subarrays are 2.
Input: arr[] = {2, 4, 3, 5, 6}, K = 2
Output: 3
Approach: The given problem can be solved using Policy-based Data Structures i.e., ordered_set. Follow the steps below to solve the given problem:
- Precompute all the primes and non-primes till 105 using Sieve Of Eratosthenes.
- Initialize a variable, say count that stores the resultant count of subarrays.
- Find the average and median of the first K elements and if the average >= median and both average and medians are either prime or non-prime, then increment the count by 1.
- Store the first K array elements in the ordered_set.
- Traverse the given array over the range [0, N – K] and perform the following steps:
- Remove the current element arr[i] from the ordered_set and add (i + k)th element i.e., arr[i + K] to the ordered_set.
- Find the median of the array using the function find_order_by_set((K + 1)/2 – 1).
- Find the average of the current subarray.
- If the average >= median and both average and medians are either prime or non-prime, then increment the count by 1.
- After completing the above steps, print the value of count as the result.
Below is the implementation of the above approach.
C++
// C++ program for the above approach #include <bits/stdc++.h> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> #include <stdlib.h> using namespace __gnu_pbds; using namespace std; typedef tree< int , null_type, less_equal< int >, rb_tree_tag, tree_order_statistics_node_update> ordered_set; const int mxN = ( int )1e5; // Stores whether i is prime or not bool prime[mxN + 1]; // Function to precompute all the prime // numbers using sieve of eratosthenes void SieveOfEratosthenes() { // Initialize the prime array memset (prime, true , sizeof (prime)); // Iterate over the range [2, mxN] for ( int p = 2; p * p <= mxN; p++) { // If the prime[p] is unchanged, // then it is a prime if (prime[p]) { // Mark all multiples of p // as non-prime for ( int i = p * p; i <= mxN; i += p) prime[i] = false ; } } } // Function to find number of subarrays // that satisfy the given criteria int countSubarray( int arr[], int n, int k) { // Initialize the ordered_set ordered_set s; // Stores the sum for subarray int sum = 0; for ( int i = 0; i < ( int )k; i++) { s.insert(arr[i]); sum += arr[i]; } // Stores the average for each // possible subarray int avgsum = sum / k; // Stores the count of subarrays int ans = 0; // For finding the median use the // find_by_order(k) that returns // an iterator to kth element int med = *s.find_by_order( (k + 1) / 2 - 1); // Check for the valid condition if (avgsum - med >= 0 && ((prime[med] == 0 && prime[avgsum] == 0) || (prime[med] != 0 && prime[avgsum] != 0))) { // Increment the resultant // count of subarray ans++; } // Iterate the subarray over the // the range [0, N - K] for ( int i = 0; i < ( int )(n - k); i++) { // Erase the current element // arr[i] s.erase(s.find_by_order( s.order_of_key(arr[i]))); // The function Order_of_key(k) // returns the number of items // that are strictly smaller // than K s.insert(arr[i + k]); sum -= arr[i]; // Add the (i + k)th element sum += arr[i + k]; // Find the average avgsum = sum / k; // Get the median value med = *s.find_by_order( (k + 1) / 2 - 1); // Check the condition if (avgsum - med >= 0 && ((prime[med] == 0 && prime[avgsum] == 0) || (prime[med] != 0 && prime[avgsum] != 0))) { // Increment the count of // subarray ans++; } } // Return the resultant count // of subarrays return ans; } // Driver Code int main() { // Precompute all the primes SieveOfEratosthenes(); int arr[] = { 2, 4, 3, 5, 6 }; int K = 3; int N = sizeof (arr) / sizeof (arr[0]); cout << countSubarray(arr, N, K); return 0; } |
Java
import java.util.*; import java.util.stream.*; public class Gfg { static final int mxN = ( int )1e5; static boolean [] prime = new boolean [mxN + 1 ]; static void sieveOfEratosthenes() { Arrays.fill(prime, true ); for ( int p = 2 ; p * p <= mxN; p++) { if (prime[p]) { for ( int i = p * p; i <= mxN; i += p) { prime[i] = false ; } } } } static int countSubarray( int [] arr, int n, int k) { TreeSet<Integer> s = new TreeSet<>(); int sum = 0 ; for ( int i = 0 ; i < k; i++) { s.add(arr[i]); sum += arr[i]; } int avgsum = sum / k; int ans = 0 ; int med = s.stream() .skip((k + 1 ) / 2 - 1 ) .findFirst() .get(); if (avgsum - med >= 0 && ((prime[med] == false && prime[avgsum] == false ) || (prime[med] != false && prime[avgsum] != false ))) { ans++; } for ( int i = 0 ; i < n - k; i++) { s.remove(arr[i]); s.add(arr[i + k]); sum -= arr[i]; sum += arr[i + k]; avgsum = sum / k; med = s.stream() .skip((k + 1 ) / 2 - 1 ) .findFirst() .get(); if (avgsum - med >= 0 && ((prime[med] == false && prime[avgsum] == false ) || (prime[med] != false && prime[avgsum] != false ))) { ans++; } } return ans; } public static void main(String[] args) { sieveOfEratosthenes(); int [] arr = { 2 , 4 , 3 , 5 , 6 }; int K = 3 ; int N = arr.length; System.out.println(countSubarray(arr, N, K)); } } |
C#
using System; using System.Linq; using System.Collections.Generic; class Gfg { static int mxN = 100000; static bool [] prime = new bool [mxN + 1]; static void sieveOfEratosthenes() { for ( int i = 0; i < prime.Length; i++) { prime[i] = true ; } for ( int p = 2; p * p <= mxN; p++) { if (prime[p]) { for ( int i = p * p; i <= mxN; i += p) { prime[i] = false ; } } } } static int countSubarray( int [] arr, int n, int k) { SortedSet< int > s = new SortedSet< int >(); int sum = 0; for ( int i = 0; i < k; i++) { s.Add(arr[i]); sum += arr[i]; } int avgsum = sum / k; int ans = 0; int med = s.Skip((k + 1) / 2 - 1).First(); if (avgsum - med >= 0 && ((prime[med] == false && prime[avgsum] == false ) || (prime[med] != false && prime[avgsum] != false ))) { ans++; } for ( int i = 0; i < n - k; i++) { s.Remove(arr[i]); s.Add(arr[i + k]); sum -= arr[i]; sum += arr[i + k]; avgsum = sum / k; med = s.Skip((k + 1) / 2 - 1).First(); if (avgsum - med >= 0 && ((prime[med] == false && prime[avgsum] == false ) || (prime[med] != false && prime[avgsum] != false ))) { ans++; } } return ans; } public static void Main( string [] args) { sieveOfEratosthenes(); int [] arr = { 2, 4, 3, 5, 6 }; int K = 3; int N = arr.Length; Console.WriteLine(countSubarray(arr, N, K)); } } |
Javascript
const mxN = 1e5; let prime = new Array(mxN + 1).fill( true ); function sieveOfEratosthenes() { for (let p = 2; p * p <= mxN; p++) { if (prime[p]) { for (let i = p * p; i <= mxN; i += p) { prime[i] = false ; } } } } function countSubarray(arr, n, k) { let s = new Set(); let sum = 0; for (let i = 0; i < k; i++) { s.add(arr[i]); sum += arr[i]; } let avgsum = Math.floor(sum / k); let ans = 0; let med = [...s].sort((a, b) => a - b)[(Math.floor((k + 1) / 2) - 1)]; if (avgsum - med >= 0 && ((prime[med] == false && prime[avgsum] == false ) || (prime[med] != false && prime[avgsum] != false ))) { ans++; } for (let i = 0; i < n - k; i++) { s. delete (arr[i]); s.add(arr[i + k]); sum -= arr[i]; sum += arr[i + k]; avgsum = Math.floor(sum / k); med = [...s].sort((a, b) => a - b)[(Math.floor((k + 1) / 2) - 1)]; if (avgsum - med >= 0 && ((prime[med] == false && prime[avgsum] == false ) || (prime[med] != false && prime[avgsum] != false ))) { ans++; } } return ans; } sieveOfEratosthenes(); let arr = [2, 4, 3, 5, 6]; let K = 3; let N = arr.length; console.log(countSubarray(arr, N, K)); // this code is contributed by devendra |
Python3
import math mxN = 100000 prime = [ True ] * (mxN + 1 ) def sieveOfEratosthenes(): for i in range ( 2 , int (math.sqrt(mxN)) + 1 ): if prime[i]: for j in range (i * i, mxN + 1 , i): prime[j] = False def countSubarray(arr, n, k): s = set () sum_arr = sum (arr[:k]) for i in range (k): s.add(arr[i]) avgsum = sum_arr / / k ans = 0 med = sorted (s)[(k + 1 ) / / 2 - 1 ] if avgsum - med > = 0 and (( not prime[med] and not prime[avgsum]) or (prime[med] and prime[avgsum])): ans + = 1 for i in range (n - k): s.remove(arr[i]) s.add(arr[i + k]) sum_arr = sum_arr - arr[i] + arr[i + k] avgsum = sum_arr / / k med = sorted (s)[(k + 1 ) / / 2 - 1 ] if avgsum - med > = 0 and (( not prime[med] and not prime[avgsum]) or (prime[med] and prime[avgsum])): ans + = 1 return ans def main(): sieveOfEratosthenes() arr = [ 2 , 4 , 3 , 5 , 6 ] K = 3 N = len (arr) print (countSubarray(arr, N, K)) if __name__ = = '__main__' : main() |
2
Time Complexity: O(N*log N + N*log(log N))
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!