Tuesday, November 19, 2024
Google search engine
HomeData Modelling & AICount distinct XOR values among pairs using numbers in range 1 to...

Count distinct XOR values among pairs using numbers in range 1 to N

Given a number N. The task is to count the number of distinct XOR of any possible pairs using numbers from 1 to N inclusive.

Examples:

Input: N = 3
Output: 4
Explanation: Following are the all possible pairs using elements from 1 to N inclusive.
1^1 = 0 
1^2 = 3 
1^3 = 2 
2^2 = 0 
2^3 = 1
3^3 = 0 
Therefore, there are 4 distinct possible XOR values.

Input: N = 2
Output: 2

 

Naive Approach:

The naive approach to solve this problem is to generate all possible pairs from 1 to N and then calculate their XOR and store it in a set. After calculating XOR of all pairs, the size of the set will be the count of distinct XOR of any possible pairs.

Algorithm:

  1.    Initialize a variable count to 0.
  2.    Loop from i = 1 to N, and within this loop, loop from j = i to N.
  3.    For each pair (i, j), calculate the XOR value using i^j.
  4.    If this XOR value is not already present in the set of distinct XOR values, add it to the set and increment the count              variable by 1.
  5.    After both loops, return the count variable as the answer.

Below is the implementation of the approach:

C++




// C++ code for the approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to coint distinct Xor
int countDistinctXOR(int n) {
      // to store distinct XOR values
    set<int> distinctXOR;
   
    for (int i = 1; i <= n; i++) {
        for (int j = i; j <= n; j++) {
          // calculating XOR of pair (i, j)
          int XOR = i ^ j;
           
          // inserting XOR in set
          distinctXOR.insert(XOR);
        }
    }
   
      // returning size of the set
    return distinctXOR.size();
}
 
// Driver's Code
int main() {
    int n = 3;
   
    cout << countDistinctXOR(n) << endl;
    return 0;
}


Java




import java.util.HashSet;
 
public class Main {
    // Function to count distinct XOR values
    static int countDistinctXOR(int n)
    {
        // To store distinct XOR values
        HashSet<Integer> distinctXOR = new HashSet<>();
 
        for (int i = 1; i <= n; i++) {
            for (int j = i; j <= n; j++) {
                // Calculating XOR of pair (i, j)
                int XOR = i ^ j;
 
                // Inserting XOR in the HashSet
                distinctXOR.add(XOR);
            }
        }
 
        // Returning the size of the HashSet
        return distinctXOR.size();
    }
 
    // Driver's Code
    public static void main(String[] args)
    {
        int n = 3;
 
        System.out.println(countDistinctXOR(n));
    }
}


Python3




# Python3 code for the approach
 
# Function to coint distinct Xor
def countDistinctXOR(n):
  # to store distinct XOR values
    distinctXOR = set()
    for i in range(1, n+1):
        for j in range(i, n+1):
          # calculating XOR of pair (i, j)
            XOR = i ^ j
           # inserting XOR in set
            distinctXOR.add(XOR)
    return len(distinctXOR)
 
   
# Driver's Code
n = 3
print(countDistinctXOR(n))


C#




using System;
using System.Collections.Generic;
 
public class GFG {
    // Function to count distinct XOR
    public static int CountDistinctXOR(int n)
    {
        // To store distinct XOR values
        HashSet<int> distinctXOR = new HashSet<int>();
 
        for (int i = 1; i <= n; i++) {
            for (int j = i; j <= n; j++) {
                // Calculating XOR of pair (i, j)
                int XOR = i ^ j;
 
                // Inserting XOR in HashSet
                distinctXOR.Add(XOR);
            }
        }
 
        // Returning the size of the HashSet
        return distinctXOR.Count;
    }
 
    // Driver's Code
    public static void Main(string[] args)
    {
        int n = 3;
        Console.WriteLine(CountDistinctXOR(n));
    }
}


Javascript




// Javascript code for the approach
 
// Function to coint distinct Xor
function countDistinctXOR(n) {
    // to store distinct XOR values
    let distinctXOR = new Set();
    for (let i = 1; i <= n; i++) {
        for (let j = i; j <= n; j++) {
        // calculating XOR of pair (i, j)
            let XOR = i ^ j;
             // inserting XOR in set
            distinctXOR.add(XOR);
        }
    }
    return distinctXOR.size;
}
 
// Driver's Code
let n = 3;
console.log(countDistinctXOR(n));


Output

4





Time complexity: O(N^2) because the outer loop runs N times and the inner loop runs N-i times for each i, so the total number of iterations is 1+2+…+N = N*(N+1)/2.

Auxiliary Space: O(d) where d is number of distinct XOR possible. This is because set has been created to store values of XOR.

Approach: This problem is observation-based. Follow the steps below to solve the given problem. 

  • For N = 1 and N = 2 the require output are 1 and 2 respectively.
  • Now for N≥3, there are two possible cases:
    • If N is not a power of two then,  there will be a total of ‘t’ numbers where t is the power of 2 which is just next to the number N. They vary from [0 to t – 1]. Because let’s say, N = 5 or 6 or 7 In all the above cases values varies from [0, 1, 2, 3, 4, 5, 6, 7].
    • If N is a power of two then, all the numbers will be possible except the number itself. Because let’s say, N = 4 in binary it is “100” so as we know XOR operation gives 1″ if both bits are different else it gives 0. Possible values are [0, 1, 2, 3,    4, 5, 6, 7].

Below is the implementation of the above approach.

C++




// C++ code to implement above approach
#include <cmath>
#include <iostream>
using namespace std;
 
int findDistinctXOR(int n)
{
 
    // Corner case
    if (n == 1) {
        cout << 1 << endl;
    }
    if (n == 2) {
        cout << 2 << endl;
    }
 
    long long x, next;
    x = log2(n);
 
    // if n is power of two
    if ((n & (n - 1)) == 0) {
 
        next = pow(2, x + 1);
        cout << next - 1 << endl;
    }
    else {
        next = pow(2, x + 1);
        cout << next << endl;
    }
}
 
// Driver Code
int main()
{
    int N = 3;
 
    findDistinctXOR(N);
    return 0;
}


Java




// Java code to implement above approach
//include <cmath>
import java.util.*;
class GFG
{
 
static void findDistinctXOR(int n)
{
 
    // Corner case
    if (n == 1) {
        System.out.print(1 +"\n");
    }
    if (n == 2) {
        System.out.print(2 +"\n");
    }
 
    long x, next;
    x = (long) Math.log(n);
 
    // if n is power of two
    if ((n & (n - 1)) == 0) {
 
        next = (long) Math.pow(2, x + 1);
        System.out.print(next - 1 +"\n");
    }
    else {
        next = (long) Math.pow(2, x + 1);
        System.out.print(next +"\n");
    }
}
 
// Driver Code
public static void main(String[] args)
{
    int N = 3;
 
    findDistinctXOR(N);
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python code for the above approach
import math as Math
 
def findDistinctXOR(n):
 
    # Corner case
    if (n == 1):
        print(1)
    if (n == 2):
        print(2)
    x = None
    next = None
    x = Math.floor(Math.log2(n))
 
    # if n is power of two
    if ((n & (n - 1)) == 0):
        next = Math.pow(2, x + 1)
        print((next - 1))
    else:
        next = Math.pow(2, x + 1)
        print(int(next))
 
# Driver Code
N = 3
findDistinctXOR(N)
 
# This code is contributed by Saurabh Jaiswal


C#




// C# code to implement above approach
using System;
 
class GFG{
 
static void findDistinctXOR(int n)
{
     
    // Corner case
    if (n == 1)
    {
        Console.WriteLine(1);
    }
    if (n == 2)
    {
        Console.WriteLine(2);
    }
 
    long x, next;
    x = (long)Math.Log(n, 2);
 
    // If n is power of two
    if ((n & (n - 1)) == 0)
    {
        next = (long)Math.Pow(2, x + 1);
        Console.WriteLine(next - 1);
    }
    else
    {
        next = (long)Math.Pow(2, x + 1);
        Console.WriteLine(next);
    }
}
 
// Driver Code
public static void Main()
{
    int N = 3;
     
    findDistinctXOR(N);
}
}
 
// This code is contributed by ukasp


Javascript




<script>
       // JavaScript code for the above approach
       function findDistinctXOR(n)
       {
        
           // Corner case
           if (n == 1) {
               document.write(1 + "<br>")
           }
           if (n == 2) {
               document.write(2 + "<br>")
           }
           let x, next;
           x = Math.floor(Math.log2(n));
            
           // if n is power of two
           if ((n & (n - 1)) == 0) {
               next = Math.pow(2, x + 1);
               document.write((next - 1) + "<br>")
           }
           else {
               next = Math.pow(2, x + 1);
               document.write(next + "<br>")
           }
       }
        
       // Driver Code
       let N = 3;
       findDistinctXOR(N);
        
 // This code is contributed by Potta Lokesh
   </script>


Output

4





Time Complexity: O(log(log(n))) 
Auxiliary Space: O(1)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments