Given three numbers N, A, and X, the task is to construct the lexicographically smallest binary array of size N, containing A 0s and having an inversion count of X.
Examples:
Input: N=5, A=2, X=1
Output: 0 1 0 1 1
Explanation:
The number of inversions in this array is 1(2nd and 3rd index).Input: N=5, A=2, X=3
Output: 0 1 1 1 0
Approach: The given problem can be solved using two pointer technique based on the following observations:
- The array with A 0s having 0 inversion is the array with all 0s to the beginning and then the all the 1s.
- If an element 0 at index i and an element 1 at index j is swapped, then inversion count increases by count of 1s in the range [i, j].
- The maximum possible inversion count is A*(N-A).
Follow the steps below to solve the problem:
- If X is greater than A*(N-A), print -1 and then return.
- Initialize an array say arr[] of size N and fill the first A Indices with 0s and the remaining with 1s.
- Initialize two variables curr as A-1 and prev as N-1 to iterate over the array.
- Iterate until X is greater than 0 and curr, is not less than 0, and perform the following steps:
- If X is greater than or equal prev-cur, then do the following:
- Swap the two elements at arr[prev], and arr[curr].
- Subtract prev-cur from X.
- Decrement prev and curr by 1.
- Otherwise, do the following:
- Swap the two elements arr[curr] and arr[cur+1].
- Increment curr by 1 and decrement X by 1.
- If X is greater than or equal prev-cur, then do the following:
- Print the array arr.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to construct lexicographically // smallest binary string of length N, having // A 0s and X inversions void binaryArrayInversions( int N, int A, int X) { // If X inversions are not possible if (A * (N - A) < X) { cout << "-1" ; return ; } // Initialize array and fill with 0 int Arr[N] = { 0 }; // Fill last N-A indices with 1 fill(Arr + A, Arr + N, 1); // Stores the index of current 0 int cur = A - 1; // Stores the index of current 1 int prev = N - 1; // Iterate until X is greater than // 0 and cur is greater than equal // to 0 while (X && cur >= 0) { // If X is greater than or // equal to the prev-cur if (X >= prev - cur) { // Swap current 0 and current 1 swap(Arr[prev], Arr[cur]); // Update X X -= prev - cur; // Decrement prev and cur by 1 prev--; cur--; } // Otherwise else { // Swap current 0 with the next index swap(Arr[cur], Arr[cur + 1]); // Increment cur by 1 cur++; // Decrement X by 1 X--; } } // Print the array for ( auto u : Arr) cout << u << " " ; } // Driver code int main() { // Input int N = 5; int A = 2; int X = 1; // Function call binaryArrayInversions(N, A, X); return 0; } |
Java
// Java program for the above approach import java.util.Arrays; class GFG{ // Function to construct lexicographically // smallest binary string of length N, having // A 0s and X inversions static void binaryArrayInversions( int N, int A, int X) { // If X inversions are not possible if (A * (N - A) < X) { System.out.println( "-1" ); return ; } // Initialize array and fill with 0 int []Arr = new int [N]; // Fill last N-A indices with 1 Arrays.fill(Arr, 0 ); for ( int i = A; i < N; i++) Arr[i] = 1 ; // Stores the index of current 0 int cur = A - 1 ; // Stores the index of current 1 int prev = N - 1 ; // Iterate until X is greater than // 0 and cur is greater than equal // to 0 while (X != 0 && cur >= 0 ) { // If X is greater than or // equal to the prev-cur if (X >= prev - cur) { // Swap current 0 and current 1 int temp = Arr[prev]; Arr[prev] = Arr[cur]; Arr[cur] = temp; // Update X X -= prev - cur; // Decrement prev and cur by 1 prev--; cur--; } // Otherwise else { // Swap current 0 with the next index int temp = Arr[cur]; Arr[cur] = Arr[cur + 1 ]; Arr[cur + 1 ] = temp; // Increment cur by 1 cur++; // Decrement X by 1 X--; } } // Print the array for ( int i = 0 ; i < Arr.length; i++) System.out.print(Arr[i] + " " ); } // Driver code public static void main(String args[]) { // Input int N = 5 ; int A = 2 ; int X = 1 ; // Function call binaryArrayInversions(N, A, X); } } // This code is contributed by gfgking |
Python3
# Python3 program for the above approach # Function to construct lexicographically # smallest binary string of length N, having # A 0s and X inversions def binaryArrayInversions(N, A, X): # If X inversions are not possible if (A * (N - A) < X): print ( "-1" ) return # Initialize array and fill with 0 Arr = [ 0 ] * N for i in range (A,N): Arr[i] = 1 # Stores the index of current 0 cur = A - 1 # Stores the index of current 1 prev = N - 1 # Iterate until X is greater than # 0 and cur is greater than equal # to 0 while (X and cur > = 0 ): # If X is greater than or # equal to the prev-cur if (X > = prev - cur): # Swap current 0 and current 1 Arr[prev], Arr[cur] = Arr[cur],Arr[prev] # Update X X - = prev - cur # Decrement prev and cur by 1 prev - = 1 cur - = 1 # Otherwise else : # Swap current 0 with the next index Arr[cur], Arr[cur + 1 ] = Arr[cur + 1 ], Arr[cur] # Increment cur by 1 cur + = 1 # Decrement X by 1 X - = 1 # Print the array for u in Arr: print (u, end = " " ) # Driver code if __name__ = = '__main__' : # Input N = 5 A = 2 X = 1 # Function call binaryArrayInversions(N, A, X) # This code is contributed by mohit kumar 29. |
C#
// C# program for the above approach using System; using System.Collections.Generic; class GFG { // Function to construct lexicographically // smallest binary string of length N, having // A 0s and X inversions static void binaryArrayInversions( int N, int A, int X) { // If X inversions are not possible if (A * (N - A) < X) { Console.Write( "-1" ); return ; } // Initialize array and fill with 0 int []Arr = new int [N]; // Fill last N-A indices with 1 Array.Clear(Arr, 0, N); for ( int i=A;i<N;i++) Arr[i] = 1; // Stores the index of current 0 int cur = A - 1; // Stores the index of current 1 int prev = N - 1; // Iterate until X is greater than // 0 and cur is greater than equal // to 0 while (X!=0 && cur >= 0) { // If X is greater than or // equal to the prev-cur if (X >= prev - cur) { // Swap current 0 and current 1 int temp = Arr[prev]; Arr[prev] = Arr[cur]; Arr[cur] = temp; // Update X X -= prev - cur; // Decrement prev and cur by 1 prev--; cur--; } // Otherwise else { // Swap current 0 with the next index int temp = Arr[cur]; Arr[cur] = Arr[cur + 1]; Arr[cur + 1] = temp; // Increment cur by 1 cur++; // Decrement X by 1 X--; } } // Print the array for ( int i = 0; i < Arr.Length; i++) Console.Write(Arr[i] + " " ); } // Driver code public static void Main() { // Input int N = 5; int A = 2; int X = 1; // Function call binaryArrayInversions(N, A, X); } } // This code is contributed by SURENDRA_GANGWAR. |
Javascript
<script> // JavaScript program for the above approach // Function to construct lexicographically // smallest binary string of length N, having // A 0s and X inversions function binaryArrayInversions(N, A, X) { // If X inversions are not possible if (A * (N - A) < X) { document.write( "-1" ); return ; } // Initialize array and fill with 0 let Arr = new Array(N).fill(0); // Fill last N-A indices with 1 Arr.forEach((item, i) => { if (i >= Arr.length - (N - A)) { Arr[i] = 1 } }) // Stores the index of current 0 let cur = A - 1; // Stores the index of current 1 let prev = N - 1; // Iterate until X is greater than // 0 and cur is greater than equal // to 0 while (X && cur >= 0) { // If X is greater than or // equal to the prev-cur if (X >= prev - cur) { // Swap current 0 and current 1 let temp = Arr[prev]; Arr[prev] = Arr[cur]; Arr[cur] = temp; // Update X X -= prev - cur; // Decrement prev and cur by 1 prev--; cur--; } // Otherwise else { // Swap current 0 with the next index let temp = Arr[cur + 1]; Arr[cur + 1] = Arr[cur]; Arr[cur] = temp; // Increment cur by 1 cur++; // Decrement X by 1 X--; } } // Print the array document.write(Arr); } // Driver code // Input let N = 5; let A = 2; let X = 1; // Function call binaryArrayInversions(N, A, X); </script> |
0 1 0 1 1
Time complexity: O(N)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!