Given an array arr[] where arr[i] is the concentration of juice in ith glass. The task is to find the concentration of the resultant mixture when all the glasses are mixed in equal proportions.
Examples:
Input: arr[] = {10, 20, 30}
Output: 20
Input: arr[] = {0, 20, 20}
Output: 13.3333
Approach: Since the juices are mixed in equal proportions so the resultant concentration will be the average of all the individual concentrations. Therefore the required answer would be sum(arr) / n where n is the size of the array.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the concentration // of the resultant mixture double mixtureConcentration( int n, int p[]) { double res = 0; for ( int i = 0; i < n; i++) res += p[i]; res /= n; return res; } // Driver code int main() { int arr[] = { 0, 20, 20 }; int n = sizeof (arr) / sizeof (arr[0]); cout << mixtureConcentration(n, arr); } |
C
// C implementation of the approach #include <stdio.h> // Function to return the concentration // of the resultant mixture double mixtureConcentration( int n, int p[]) { double res = 0; for ( int i = 0; i < n; i++) res += p[i]; res /= n; return res; } // Driver code int main() { int arr[] = { 0, 20, 20 }; int n = sizeof (arr) / sizeof (arr[0]); printf ( "%f" , mixtureConcentration(n, arr)); } // This code is contributed by allwink45. |
Java
// Java implementation of the approach class GFG { // Function to return the concentration // of the resultant mixture static double mixtureConcentration( int n, int []p) { double res = 0 ; for ( int i = 0 ; i < n; i++) res += p[i]; res /= n; return res; } // Driver code public static void main (String[] args) { int []arr = { 0 , 20 , 20 }; int n = arr.length; System.out.println(String.format( "%.4f" , mixtureConcentration(n, arr))); } } // This code is contributed by chandan_jnu |
Python3
# Python3 implementation of the approach # Function to return the concentration # of the resultant mixture def mixtureConcentration(n, p): res = 0 ; for i in range (n): res + = p[i]; res / = n; return res; # Driver code arr = [ 0 , 20 , 20 ]; n = len (arr); print ( round (mixtureConcentration(n, arr), 4 )); # This code is contributed # by chandan_jnu |
C#
// C# implementation of the approach using System; class GFG { // Function to return the concentration // of the resultant mixture static double mixtureConcentration( int n, int []p) { double res = 0; for ( int i = 0; i < n; i++) res += p[i]; res /= n; return Math.Round(res,4); } // Driver code static void Main() { int []arr = { 0, 20, 20 }; int n = arr.Length; Console.WriteLine(mixtureConcentration(n, arr)); } } // This code is contributed by chandan_jnu |
PHP
<?php // PHP implementation of the approach // Function to return the concentration // of the resultant mixture function mixtureConcentration( $n , $p ) { $res = 0; for ( $i = 0; $i < $n ; $i ++) $res += $p [ $i ]; $res /= $n ; return $res ; } // Driver code $arr = array ( 0, 20, 20 ); $n = count ( $arr ); print ( round (mixtureConcentration( $n , $arr ), 4)); // This code is contributed by chandan_jnu ?> |
Javascript
<script> // Javascript implementation of the approach // Function to return the concentration // of the resultant mixture function mixtureConcentration(n, p) { var res = 0; for ( var i = 0; i < n; i++) res += p[i]; res /= n; return res; } // Driver Code var arr = [ 0, 20, 20 ]; var n = arr.length; document.write(mixtureConcentration(n, arr).toFixed(4)); // This code is contributed by Ankita saini </script> |
13.3333
Time Complexity: O(N)
Auxiliary Space: O(1)