Tuesday, November 19, 2024
Google search engine
HomeData Modelling & AICheck if there exists a non adjacent pair with given sum

Check if there exists a non adjacent pair with given sum

Given an array nums[ ] and an integer target. Find whether there exists a combination of integers in nums[ ] such that their sum is equal to target and none of those elements are adjacent in the original array.

Example :

Input : nums[ ] = [1, 2, 2, 3],  target = 4
Output : true
Explanation : We can pick [1, 3] since they are non-adjacent and sums to 4

Input : nums[ ] = [1, 3, 1], target = 4
Output: false
Explanation : We can’t pick [1, 3] or [3, 1] since they are adjacent.

 

Approach: The problem can be solved using Dynamic Programming as per below steps:

  • dp[i][j]: Create a 2-d dp array that stores if it is possible to achieve a sum of exactly j after considering the first i elements from the array.
  • At a given index i and a given sum j there can be two cases:
    • Either we can include the current number, nums[i], or we don’t.
    • If we don’t include the current number, we simply look back to the previous row of the dp.
    • If we do include the current number, we have to look back two rows in the dp array, because no adjacent elements can be selected.
    • So once we select element i we can ignore element i-1 since it can’t be taken.
  • Base Case:
    • Initially initialize the boolean dp table with false.
    • Then, fill true in first column as sum 0 can always be achieved by not taking any element.
    • Also fill dp[i][nums[i]] with true values, which indicates that we can achieve a sum of nums[i] after considering the first i elements from the array (which is obvious just take the element at index i).
  • Transition states:
    • Case 1: dp[i][j] = dp[i – 1][j] || dp[i][j]
      • check the value at previous row
      • if it is true then we can make the subset sum equal to target by taking elements till the last row,
      • So make dp[i][j] true as well
    • Case 2: dp[i][j] = dp[i – 2][j – nums[i]] || dp[i][j]
      • check if we add the current element nums[i] to the current row – 2 (as it is not adjacent) dp table and make the sum equal to target.

Illustration:

Consider the example where nums[ ] = [1, 2, 2, 3], target = 4

The dp table would look like the following (i represents nums[i] and j represent target)

i (nums[i]) \ j (target) 0 1 2 3 4
0 (nums[0]=1) true true false false false
1 (nums[1]=2) true true true false false
2 (nums[2]=2) true true true true false
3 (nums[2]=3) true true true true true

Below is the implementation of the above approach:

C++




// C++ program to implement above approach
 
#include <bits/stdc++.h>
using namespace std;
 
bool subsetSumNonAdjacent(
    vector<int>& nums, int target)
{
    // size of the array
    int n = nums.size();
 
    // Boolean dp table fill with false
    vector<vector<bool> > dp(
        n, vector<bool>(target + 1, false));
 
    // Base Case
    // Initialize dp[i][0]= true
    // as 0 can always be achieved
    // by not taking anything
    for (int i = 0; i < n; i++) {
        dp[i][0] = true;
    }
 
    // Initialize dp[i][nums[i]]= true
    // as nums[i] can always be achieved
    // by taking only element
    // at index i that is nums[i]
    for (int i = 0; i < n; i++) {
        dp[i][nums[i]] = true;
    }
 
    for (int i = 0; i < n; i++) {
        for (int j = 0; j <= target; j++) {
 
            // check if we can take previous row
            if (i - 1 >= 0) {
                dp[i][j]
                    = dp[i - 1][j] || dp[i][j];
            }
 
            // check for row-2
            if (i - 2 >= 0 && j >= nums[i]) {
                dp[i][j]
                    = dp[i - 2][j - nums[i]]
                      || dp[i][j];
            }
        }
    }
 
    return dp[n - 1][target];
}
 
// Driver code
int main()
{
    vector<int> nums = { 1, 2, 2, 3 };
    int target = 4;
    cout << boolalpha
         << subsetSumNonAdjacent(nums, target);
    return 0;
}


Java




// Java Program of the above approach.
import java.util.*;
class GFG {
 
  static boolean subsetSumNonAdjacent(int[] nums, int target)
  {
 
    // size of the array
    int n = nums.length;
 
    // Boolean dp table fill with false
    boolean[][] dp = new boolean[n][target + 1];
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < target + 1; j++) {
        dp[i][j] = false;
      }
    }
 
    // Base Case
    // Initialize dp[i][0]= true
    // as 0 can always be achieved
    // by not taking anything
    for (int i = 0; i < n; i++) {
      dp[i][0] = true;
    }
 
    // Initialize dp[i][nums[i]]= true
    // as nums[i] can always be achieved
    // by taking only element
    // at index i that is nums[i]
    for (int i = 0; i < n; i++) {
      dp[i][nums[i]] = true;
    }
 
    for (int i = 0; i < n; i++) {
      for (int j = 0; j <= target; j++) {
 
        // check if we can take previous row
        if (i - 1 >= 0) {
          dp[i][j] = dp[i - 1][j] || dp[i][j];
        }
 
        // check for row-2
        if (i - 2 >= 0 && j >= nums[i]) {
          dp[i][j] = dp[i - 2][j - nums[i]]
            || dp[i][ j];
        }
      }
    }
 
    return dp[n - 1][target];
  }
 
  // Driver Code
  public static void main(String args[])
  {
    int[] nums = { 1, 2, 2, 3 };
    int target = 4;
    System.out.print(subsetSumNonAdjacent(nums, target));
  }
}
 
// This code is contributed by code_hunt.


Python3




# Python program to implement above approach
def subsetSumNonAdjacent(nums,target):
 
    # size of the array
    n = len(nums)
 
    # Boolean dp table fill with false
    dp = [[False]*(target+1)]*n
 
    # Base Case
    # Initialize dp[i][0]= true
    # as 0 can always be achieved
    # by not taking anything
    for i in range(n):
        dp[i][0] = True
 
    # Initialize dp[i][nums[i]]= true
    # as nums[i] can always be achieved
    # by taking only element
    # at index i that is nums[i]
    for i in range(n):
        dp[i][nums[i]] = True
 
    for i in range(n):
        for j in range(target+1):
 
            # check if we can take previous row
            if (i - 1 >= 0):
                dp[i][j] = dp[i - 1][j] or dp[i][j]
 
            # check for row-2
            if (i - 2 >= 0 and j >= nums[i]):
                dp[i][j] = dp[i - 2][j - nums[i]] or dp[i][j]
 
    return dp[n - 1][target]
 
# Driver code
nums = [ 1, 2, 2, 3 ]
target = 4
print(subsetSumNonAdjacent(nums, target))
 
# This code is contributed by shinjanpatra


C#




// C# program to implement above approach
using System;
class GFG {
 
  static bool subsetSumNonAdjacent(int[] nums, int target)
  {
     
    // size of the array
    int n = nums.Length;
 
    // Boolean dp table fill with false
    bool[, ] dp = new bool[n, target + 1];
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < target + 1; j++) {
        dp[i, j] = false;
      }
    }
 
    // Base Case
    // Initialize dp[i][0]= true
    // as 0 can always be achieved
    // by not taking anything
    for (int i = 0; i < n; i++) {
      dp[i, 0] = true;
    }
 
    // Initialize dp[i][nums[i]]= true
    // as nums[i] can always be achieved
    // by taking only element
    // at index i that is nums[i]
    for (int i = 0; i < n; i++) {
      dp[i, nums[i]] = true;
    }
 
    for (int i = 0; i < n; i++) {
      for (int j = 0; j <= target; j++) {
 
        // check if we can take previous row
        if (i - 1 >= 0) {
          dp[i, j] = dp[i - 1, j] || dp[i, j];
        }
 
        // check for row-2
        if (i - 2 >= 0 && j >= nums[i]) {
          dp[i, j] = dp[i - 2, j - nums[i]]
            || dp[i, j];
        }
      }
    }
 
    return dp[n - 1, target];
  }
 
  // Driver code
  public static void Main()
  {
    int[] nums = { 1, 2, 2, 3 };
    int target = 4;
    Console.Write(subsetSumNonAdjacent(nums, target));
  }
}
 
// This code is contributed by Samim Hossain Mondal.


Javascript




<script>
 
// JavaScript program to implement above approach
function subsetSumNonAdjacent(nums,target)
{
    // size of the array
    let n = nums.length;
 
    // Boolean dp table fill with false
    let dp = new Array(n);
    for(let i=0;i<n;i++)
        dp[i] = new Array(target + 1).fill(false);
 
    // Base Case
    // Initialize dp[i][0]= true
    // as 0 can always be achieved
    // by not taking anything
    for (let i = 0; i < n; i++) {
        dp[i][0] = true;
    }
 
    // Initialize dp[i][nums[i]]= true
    // as nums[i] can always be achieved
    // by taking only element
    // at index i that is nums[i]
    for (let i = 0; i < n; i++) {
        dp[i][nums[i]] = true;
    }
 
    for (let i = 0; i < n; i++) {
        for (let j = 0; j <= target; j++) {
 
            // check if we can take previous row
            if (i - 1 >= 0) {
                dp[i][j]
                    = dp[i - 1][j] || dp[i][j];
            }
 
            // check for row-2
            if (i - 2 >= 0 && j >= nums[i]) {
                dp[i][j]
                    = dp[i - 2][j - nums[i]]
                      || dp[i][j];
            }
        }
    }
 
    return dp[n - 1][target];
}
 
// Driver code
let nums = [ 1, 2, 2, 3 ]
let target = 4
document.write(subsetSumNonAdjacent(nums, target));
 
// This code is contributed by shinjanpatra
 
</script>


Output

true

Time Complexity: O(N*target)
Auxiliary Space: O(N*target)

Another Approach ( Time and Space Optimization): we can use Binary search  and Vector of pair in these way:  

1. First store the element of array and their index in vector of pair.                                                                                     2. Then we will sort vector of pair for binary search .                                                                                                               3. Then we will iterate whole array and our Newtarget will be ‘target -arr[i]’ . If Newtarget exists in array ,Then we will find index of first and last occurrence of Newtarget using binary search                                                                                 4. Then check all the index in the range from firstocc to lastocc , if the index of Newtarget and arr[i] is adjacent or not  using vector of pair. If it is not adjacent . Then we will return true. If we have not found any index of that type by iterating whole array.Then return false .
 Below is the implementation of the above approach :

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to Find the index of first occurrence of target
int Firstocc(vector<pair<int, int>> &vec, int target) {
    int l = 0, h = vec.size() - 1 , index=-1;
     
    while (l <= h) {
        int mid = (l + h) / 2;
         
        // Updating index of target
        if(vec[mid].first == target){ index = mid; }
         
        if (vec[mid].first >= target)
         {   h = mid - 1; }//Because we want to find first occ
          
         else {    l = mid + 1;  }
    }
    return index;
}
 
// Function to Find the index of last occurrence of target
int Lastocc(vector<pair<int, int>> &vec, int target) {
    int l = 0, h = vec.size() - 1 , index=-1;
     
    while (l <= h) {
        int mid = (l + h) / 2;
         
        // Updating index of target
        if(vec[mid].first == target){ index = mid; }
         
        if (vec[mid].first <= target)
         {    l = mid + 1;}//Because we want to find last occ
          
         else {   h = mid - 1;   }
    }
    return index;
}
 
// Function to Check if there exists a non-adjacent
// pair with given sum
bool subsetSumNonAdjacent(
    vector<int>& nums, int target)
{
    // size of the array
    int n = nums.size();
 
    // vector of pair for storing value and index of value
    vector<pair<int, int>> vec;
   
    for(int i=0 ;i < n ;i++)
    {
      vec.push_back(make_pair(nums[i], i));
    }
    sort(vec.begin(),vec.end());// sort vec for Binary search
   
    for(int i= 0 ; i < n ;i++)
    {   // our target will be Newtarget
        int Newtarget = target - vec[i].first;
         
        int Firstindex=Firstocc(vec , Newtarget );
        int Lastindex=Lastocc(vec , Newtarget );
         
       //checking if target exist in vec or not
        if(Firstindex >=0 && Lastindex>=0 )
        {    int pos = vec[i].second;// position in nums vector
              
            // At max four iteration Because we can get our answer in it
            for(int j=Firstindex; j< 4 && j<= Lastindex;j++)
            {
                int currpos = vec[j].second;// position in nums vector
                 
                // checking if it is a adjacent pair or not
                if(pos != currpos && pos-1 != currpos
                 && pos+1 != currpos)
                 {
                     return true; }
                  
            }
        }
    }
   
    return false ;
}
 
// Driver code
int main()
{
    vector<int> nums = { 1, 2, 2, 3 };
    int target = 4;
    
    //Function call
    if(subsetSumNonAdjacent(nums, target))
    { cout<<"true"; }
     
    else{  cout<<"false"; }
     
    return 0;
}
 
// This Approach is contributed by nikhilsainiofficial546


Java




// Python program for the above approach
 
// Function to Find the index of first occurrence of target
import java.util.Arrays;
 
public class Main {
 
    // Function to Find the index of first occurrence of
    // target
    public static int firstOcc(int[][] vec, int target)
    {
        int l = 0;
        int h = vec.length - 1;
        int index = -1;
 
        while (l <= h) {
            int mid = (l + h) / 2;
 
            // Updating index of target
            if (vec[mid][0] == target) {
                index = mid;
            }
 
            if (vec[mid][0] >= target) {
                h = mid - 1; // Because we want to find
                             // first occ
            }
            else {
                l = mid + 1;
            }
        }
 
        return index;
    }
 
    // Function to Find the index of last occurence of
    // target
    public static int lastOcc(int[][] vec, int target)
    {
        int l = 0;
        int h = vec.length - 1;
        int index = -1;
 
        while (l <= h) {
            int mid = (l + h) / 2;
 
            // Updating index of target
            if (vec[mid][0] == target) {
                index = mid;
            }
 
            if (vec[mid][0] <= target) {
                l = mid
                    + 1; // Because we want to find last occ
            }
            else {
                h = mid - 1;
            }
        }
 
        return index;
    }
 
    // Function to Check if there exists a non-adjacent pair
    // with given sum
    public static boolean subsetSumNonAdjacent(int[] nums,
                                               int target)
    {
        // size of the array
        int n = nums.length;
 
        // list of tuples for storing value and index of
        // value
        int[][] vec = new int[n][2];
        for (int i = 0; i < n; i++) {
            vec[i][0] = nums[i];
            vec[i][1] = i;
        }
 
        Arrays.sort(
            vec,
            (a, b)
                -> Integer.compare(
                    a[0],
                    b[0])); // sort vec for Binary search
 
        for (int i = 0; i < n; i++) {
            // our target will be Newtarget
            int Newtarget = target - vec[i][0];
 
            int firstIndex = firstOcc(vec, Newtarget);
            int lastIndex = lastOcc(vec, Newtarget);
 
            // checking if target exist in vec or not
            if (firstIndex >= 0 && lastIndex >= 0) {
                int pos
                    = vec[i][1]; // position in nums list
 
                // At max four iteration Because we can get
                // our answer in it
                for (int j = firstIndex;
                     j <= Math.min(4, lastIndex); j++) {
                    int currPos
                        = vec[j]
                             [1]; // position in nums list
 
                    // checking if it is a adjacent pair or
                    // not
                    if (pos != currPos && pos - 1 != currPos
                        && pos + 1 != currPos) {
                        return true;
                    }
                }
            }
        }
 
        return false;
    }
 
    public static void main(String[] args)
    {
        int[] nums = { 1, 2, 2, 3 };
        int target = 4;
 
        // Function call
        if (subsetSumNonAdjacent(nums, target)) {
            System.out.println("true");
        }
        else {
            System.out.println("false");
        }
    }
}
// This code is generated by Chetan Bargal


Python3




# Python program for the above approach
 
# Function to Find the index of first occurrence of target
 
 
def Firstocc(vec, target):
    l = 0
    h = len(vec) - 1
    index = -1
 
    while l <= h:
        mid = (l + h) // 2
 
        # Updating index of target
        if vec[mid][0] == target:
            index = mid
 
        if vec[mid][0] >= target:
            h = mid - 1  # Because we want to find first occ
        else:
            l = mid + 1
 
    return index
 
# Function to Find the index of last occurrence of target
 
 
def Lastocc(vec, target):
    l = 0
    h = len(vec) - 1
    index = -1
 
    while l <= h:
        mid = (l + h) // 2
 
        # Updating index of target
        if vec[mid][0] == target:
            index = mid
 
        if vec[mid][0] <= target:
            l = mid + 1  # Because we want to find last occ
        else:
            h = mid - 1
 
    return index
 
# Function to Check if there exists a non-adjacent pair with given sum
 
 
def subsetSumNonAdjacent(nums, target):
    # size of the array
    n = len(nums)
 
    # list of tuples for storing value and index of value
    vec = [(nums[i], i) for i in range(n)]
 
    vec = sorted(vec)  # sort vec for Binary search
 
    for i in range(n):
        # our target will be Newtarget
        Newtarget = target - vec[i][0]
 
        Firstindex = Firstocc(vec, Newtarget)
        Lastindex = Lastocc(vec, Newtarget)
 
        # checking if target exist in vec or not
        if Firstindex >= 0 and Lastindex >= 0:
            pos = vec[i][1# position in nums list
 
            # At max four iteration Because we can get our answer in it
            for j in range(Firstindex, min(4, Lastindex + 1)):
                currpos = vec[j][1# position in nums list
 
                # checking if it is a adjacent pair or not
                if pos != currpos and pos - 1 != currpos and pos + 1 != currpos:
                    return True
 
    return False
 
 
# Driver code
nums = [1, 2, 2, 3]
target = 4
 
# Function call
if subsetSumNonAdjacent(nums, target):
    print("true")
else:
    print("false")


C#




// C# program for the above approach
 
using System;
using System.Collections.Generic;
using System.Linq;
 
class GFG {
    // Function to Find the index of first occurrence of
    // target
    static int Firstocc(List<Tuple<int, int> > vec,
                        int target)
    {
        int l = 0, h = vec.Count - 1, index = -1;
 
        while (l <= h) {
            int mid = (l + h) / 2;
 
            // Updating index of target
            if (vec[mid].Item1 == target) {
                index = mid;
            }
 
            if (vec[mid].Item1 >= target) {
                h = mid - 1;
            } // Because we want to find first occ
            else {
                l = mid + 1;
            }
        }
        return index;
    }
 
    // Function to Find the index of last occurrence of
    // target
    static int Lastocc(List<Tuple<int, int> > vec,
                       int target)
    {
        int l = 0, h = vec.Count - 1, index = -1;
 
        while (l <= h) {
            int mid = (l + h) / 2;
 
            // Updating index of target
            if (vec[mid].Item1 == target) {
                index = mid;
            }
 
            if (vec[mid].Item1 <= target) {
                l = mid + 1;
            } // Because we want to find last occ
            else {
                h = mid - 1;
            }
        }
        return index;
    }
 
    // Function to Check if there exists a non-adjacent
    // pair with given sum
    static bool subsetSumNonAdjacent(List<int> nums,
                                     int target)
    {
        // size of the array
        int n = nums.Count;
 
        // List of Tuple for storing value and index of
        // value
        List<Tuple<int, int> > vec
            = new List<Tuple<int, int> >();
 
        for (int i = 0; i < n; i++) {
            vec.Add(Tuple.Create(nums[i], i));
        }
 
        vec.Sort(); // sort vec for Binary search
 
        for (int i = 0; i < n;
             i++) { // our target will be Newtarget
            int Newtarget = target - vec[i].Item1;
 
            int Firstindex = Firstocc(vec, Newtarget);
            int Lastindex = Lastocc(vec, Newtarget);
 
            // checking if target exist in vec or not
            if (Firstindex >= 0 && Lastindex >= 0) {
                int pos
                    = vec[i]
                          .Item2; // position in nums vector
 
                // At max four iteration Because we can get
                // our answer in it
                for (int j = Firstindex;
                     j < 4 && j <= Lastindex; j++) {
                    int currpos
                        = vec[j].Item2; // position in nums
                                        // vector
 
                    // checking if it is a adjacent pair or
                    // not
                    if (pos != currpos && pos - 1 != currpos
                        && pos + 1 != currpos) {
                        return true;
                    }
                }
            }
        }
 
        return false;
    }
 
    // Driver code
    static void Main(string[] args)
    {
        List<int> nums = new List<int>{ 1, 2, 2, 3 };
        int target = 4;
 
        // Function call
        if (subsetSumNonAdjacent(nums, target)) {
            Console.WriteLine("true");
        }
        else {
            Console.WriteLine("false");
        }
    }
}


Javascript




// javascript program for the above approach
 
// Function to Find the index of first occurrence of target
function Firstocc(vec, target) {
    let l = 0, h = vec.length - 1 , index=-1;
     
    while (l <= h) {
        let mid = Math.floor((l + h) / 2);
         
        // Updating index of target
        if(vec[mid][0] == target){ index = mid; }
         
        if (vec[mid][0] >= target)
         {   h = mid - 1; }//Because we want to find first occ
          
         else {    l = mid + 1;  }
    }
    return index;
}
 
// Function to Find the index of last occurrence of target
function Lastocc(vec, target) {
    let l = 0, h = vec.length - 1 , index=-1;
     
    while (l <= h) {
        let mid = Math.floor((l + h) / 2);
         
        // Updating index of target
        if(vec[mid][0] == target){ index = mid; }
         
        if (vec[mid][0] <= target)
         {    l = mid + 1;}//Because we want to find last occ
          
         else {   h = mid - 1;   }
    }
    return index;
}
 
// Function to Check if there exists a non-adjacent
// pair with given sum
function subsetSumNonAdjacent(nums, target)
{
    // size of the array
    let n = nums.length;
 
    // vector of pair for storing value and index of value
    let vec = [];
   
    for(let i=0 ;i < n ;i++)
    {
      vec.push([nums[i], i]);
    }
     
    vec.sort(function(a, b){
        if(a[0] != b[0]){
            return a[0] - b[0];
        }
         
        return a[1] - b[1];
    });
   
    for(let i= 0 ; i < n ;i++)
    {   // our target will be Newtarget
        let Newtarget = target - vec[i][0];
         
        let Firstindex=Firstocc(vec , Newtarget );
        let Lastindex=Lastocc(vec , Newtarget );
         
       //checking if target exist in vec or not
        if(Firstindex >=0 && Lastindex>=0 )
        {    let pos = vec[i][1];// position in nums vector
              
            // At max four iteration Because we can get our answer in it
            for(let j=Firstindex; j< 4 && j<= Lastindex;j++)
            {
                let currpos = vec[j][1];// position in nums vector
                 
                // checking if it is a adjacent pair or not
                if(pos != currpos && pos-1 != currpos
                 && pos+1 != currpos)
                 {
                     return true; }
                  
            }
        }
    }
   
    return false ;
}
 
// Driver code
 
let nums = [1, 2, 2, 3];
let target = 4;
 
// Function call
if(subsetSumNonAdjacent(nums, target))
{
    console.log("true");
}
else{
    console.log("false");
}
 
// This Approach is contributed by Nidhi goel.


Output

true

Time Complexity: O(n * log n * 4) , we can also reduce it to O(n * log n) by writing conditions , instead using loop.
Auxiliary Space: O(n)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments