Given an array arr[] consisting of N positive integers, the task is to check if it is possible to color the N objects such that for ith element of the array there exist exactly arr[i] distinct colors used in coloring all the objects except for the ith object.
Examples:
Input: arr[] = {1, 2, 2}
Output: Yes
Explanation:
One of the possible ways to color is: {“Red”, “blue”, “blue”}.
- For arr[0](=1), there is exactly 1 distinct color, which is “blue”.
- For arr[1](=2), there are exactly 2 distinct colors, which are “blue” and “red”.
- For arr[2](=3), there are exactly 2 distinct colors, which are “blue” and “red”.
Input: arr[] = {4, 3, 4, 3, 4}
Output: No
Approach: The problem can be solved based on the following observations:
- For 2 objects, there are N-2 objects common while calculating the number of distinct colors. Therefore, there can be a difference of at most 1 between the maximum and minimum element of the array arr[].
- Now there are two cases:
- If the maximum and minimum elements are equal, then the answer is “Yes”, only if the element is N – 1 or the element is less than or equal to N/2, because every color can be used more than once.
- If the difference between the maximum and minimum element is 1, then the number of distinct colors in the N object must be equal to the maximum element, because the minimum element is 1 less than the maximum element.
- Now, assuming the frequency of the minimum element as X and the frequency of the maximum element as Y, then the answer is “Yes” if and only if X+1 ≤ A ≤ X+ Y/2 (observation-based).
Follow the steps below to solve the problem:
- First sort the array in ascending order.
- If the difference between arr[N-1] and arr[0] is greater than 1, then print “No“.
- Else, if arr[N-1] is equal to arr[0], then check the following:
- If arr[N-1] = N-1 or 2*arr[N-1] <= N, then print “Yes“.
- Otherwise, print “No“.
- Else, count the frequencies of min and max elements and store them in variables, say X and Y, and then do the following:
- If arr[N-1] is greater than X and arr[N-1] is less than or equal to X+Y/2, then print “Yes“.
- Otherwise, print “No“.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to check if coloring is // possible with give conditions string checkValid( int arr[], int N) { // Sort the vector sort(arr, arr + N); // Coloring not possible in case of // maximum - minimum element > 1 if (arr[N - 1] - arr[0] > 1) return "No" ; // case 1 else if (arr[N - 1] == arr[0]) { // If h is equal to N-1 or // N is greater than 2*h if (arr[N - 1] == N - 1 || 2 * arr[N - 1] <= N) return "Yes" ; else return "No" ; } // Case 2 else { // Stores frequency of minimum element int x = 0; for ( int i = 0; i < N; i++) { // Frequency of minimum element if (arr[i] == arr[0]) x++; } // Stores frequency of maximum element int y = N - x; // Condition for case 2 if ((arr[N - 1] >= x + 1) and (arr[N - 1] <= x + y / 2)) return "Yes" ; else return "No" ; } } // Driver Code int main() { // GivenInput int arr[] = { 1, 2, 2 }; int N = sizeof (arr) / sizeof (arr[0]); // Function Call cout << checkValid(arr, N); return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG{ // Function to check if coloring is // possible with give conditions static String checkValid( int arr[], int N) { // Sort the vector Arrays.sort(arr); // Coloring not possible in case of // maximum - minimum element > 1 if (arr[N - 1 ] - arr[ 0 ] > 1 ) return "No" ; // Case 1 else if (arr[N - 1 ] == arr[ 0 ]) { // If h is equal to N-1 or // N is greater than 2*h if (arr[N - 1 ] == N - 1 || 2 * arr[N - 1 ] <= N) return "Yes" ; else return "No" ; } // Case 2 else { // Stores frequency of minimum element int x = 0 ; for ( int i = 0 ; i < N; i++) { // Frequency of minimum element if (arr[i] == arr[ 0 ]) x++; } // Stores frequency of maximum element int y = N - x; // Condition for case 2 if ((arr[N - 1 ] >= x + 1 ) && (arr[N - 1 ] <= x + y / 2 )) return "Yes" ; else return "No" ; } } // Driver Code public static void main(String[] args) { // Given Input int [] arr = { 1 , 2 , 2 }; int N = arr.length; // Function Call System.out.print(checkValid(arr, N)); } } // This code is contributed by sanjoy_62 |
Python3
# Python3 program for the above approach # Function to check if coloring is # possible with give conditions def checkValid(arr, N): # Sort the vector arr = sorted (arr) # Coloring not possible in case of # maximum - minimum element > 1 if (arr[N - 1 ] - arr[ 0 ] > 1 ): return "No" # case 1 elif (arr[N - 1 ] = = arr[ 0 ]): # If h is equal to N-1 or # N is greater than 2*h if (arr[N - 1 ] = = N - 1 or 2 * arr[N - 1 ] < = N): return "Yes" else : return "No" # Case 2 else : # Stores frequency of minimum element x = 0 for i in range (N): # Frequency of minimum element if (arr[i] = = arr[ 0 ]): x + = 1 # Stores frequency of maximum element y = N - x # Condition for case 2 if ((arr[N - 1 ] > = x + 1 ) and (arr[N - 1 ] < = x + y / / 2 )): return "Yes" else : return "No" # Driver Code if __name__ = = '__main__' : # Given Input arr = [ 1 , 2 , 2 ] N = len (arr) # Function Call print (checkValid(arr, N)) # This code is contributed by mohit kumar 29 |
C#
// C# program for the above approach using System; using System.Collections.Generic; class GFG{ // Function to check if coloring is // possible with give conditions static string checkValid( int []arr, int N) { // Sort the vector Array.Sort(arr); // Coloring not possible in case of // maximum - minimum element > 1 if (arr[N - 1] - arr[0] > 1) return "No" ; // case 1 else if (arr[N - 1] == arr[0]) { // If h is equal to N-1 or // N is greater than 2*h if (arr[N - 1] == N - 1 || 2 * arr[N - 1] <= N) return "Yes" ; else return "No" ; } // Case 2 else { // Stores frequency of minimum element int x = 0; for ( int i = 0; i < N; i++) { // Frequency of minimum element if (arr[i] == arr[0]) x++; } // Stores frequency of maximum element int y = N - x; // Condition for case 2 if ((arr[N - 1] >= x + 1) && (arr[N - 1] <= x + y / 2)) return "Yes" ; else return "No" ; } } // Driver Code public static void Main() { // GivenInput int []arr = { 1, 2, 2 }; int N = arr.Length; // Function Call Console.Write(checkValid(arr, N)); } } // This code is contributed by SURENDRA_GANGWAR. |
Javascript
<script> // Javascript program for the above approach // Function to check if coloring is // possible with give conditions function checkValid(arr, N) { // Sort the vector arr.sort((a, b) => a - b); // Coloring not possible in case of // maximum - minimum element > 1 if (arr[N - 1] - arr[0] > 1) return "No" ; // Case 1 else if (arr[N - 1] == arr[0]) { // If h is equal to N-1 or // N is greater than 2*h if (arr[N - 1] == N - 1 || 2 * arr[N - 1] <= N) return "Yes" ; else return "No" ; } // Case 2 else { // Stores frequency of minimum element let x = 0; for (let i = 0; i < N; i++) { // Frequency of minimum element if (arr[i] == arr[0]) x++; } // Stores frequency of maximum element let y = N - x; // Condition for case 2 if ((arr[N - 1] >= x + 1) && (arr[N - 1] <= x + y / 2)) return "Yes" ; else return "No" ; } } // Driver Code // GivenInput let arr = [ 1, 2, 2 ]; let N = arr.length; // Function Call document.write(checkValid(arr, N)); // This code is contributed by gfgking </script> |
Yes
Time Complexity: O(N*log(N))
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!