Given a 2D array grid[][] of size N * M, consisting of the characters “1”, “0”, and “*”, where “*” denotes an empty space and can be replaced by either a “1” or a “0”. The task is to fill the grid such that “0” and “1” occur alternatively and no two consecutive characters occur together, i.e. (101010) is valid and (101101) is not because two “1” occurs simultaneously. If it is possible to do so, print Yes and the possible 2-D array. Otherwise, print No.
Examples:
Input: N = 4, M = 4 grid[][] = { {**10}, {****}, {****}, {**01}}
Output: Yes
1010
0101
1010
0101
Explanation: Create a grid with alternating “1” and “0” characters so the answer is Yes, followed by the filled characters.Input: N = 4, M = 4, grid[][] = {{*1*0}, {****}, {**10}, {****}}
Output: No
Explanation: In the first row, 1 and 0 have one cell blank which can neither be filled with 1 nor 0.
Approach: There are only 2 possibilities for a possible 2-D array one, with starting 1 and one with starting 0. Generate both of them and check if any one of them matches with the given 2-D array grid[][]. Follow the steps below to solve the problem:
- Define a function createGrid(char grid[][1001], bool is1, int N, int M) and perform the following tasks:
- Iterate over the range [0, N] using the variable i and performing the following tasks:
- Iterate over the range [0, M] using the variable j and performing the following tasks:
- If is1 is true, then set grid[i][j] to ‘0’ and set is1 to false.
- Else, then set grid[i][j] to ‘1’ and set is1 to true.
- If M%2 is equal to 0, then set the value of is1 to not of is1.
- Iterate over the range [0, M] using the variable j and performing the following tasks:
- Iterate over the range [0, N] using the variable i and performing the following tasks:
- Define a function testGrid(char testGrid[][1001], char Grid[][1001], int N, int M) and perform the following tasks:
- Iterate over the range [0, N] using the variable i and performing the following tasks:
- Iterate over the range [0, M] using the variable j and performing the following tasks:
- If Grid[i][j] is not equal to ‘*’ and testGrid[i][j] is not equal to Grid[i][j], then return false.
- Iterate over the range [0, M] using the variable j and performing the following tasks:
- After performing the above steps, return the value of true as the answer.
- Iterate over the range [0, N] using the variable i and performing the following tasks:
- Define a function printGrid(char grid[][1001], int N, int M) and perform the following tasks:
- Iterate over the range [0, N] using the variable i and performing the following tasks:
- Iterate over the range [0, M] using the variable j and performing the following tasks:
- Print the value of grid[i][j].
- Iterate over the range [0, M] using the variable j and performing the following tasks:
- Iterate over the range [0, N] using the variable i and performing the following tasks:
- Initialize two 2-D arrays gridTest1[N][1001] and gridTest2[N][1001] to store the possible alternating grids.
- Call the function createGrid(gridTest1, true, N, M) and createGrid(gridTest2, false, N, M) to form the possible alternating grids.
- If the function testGrid(gridTest1, grid, N, M) returns true, then call the function printGrid(gridTest1, N, M) to print the grid as the answer.
- Else If, the function testGrid(gridTest2, grid, N, M) returns true, then call the function printGrid(gridTest2, N, M) to print the grid as the answer.
- Else, print No as the answer.
Below is the implementation of the above approach.
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to create the possible grids void createGrid( char grid[][1001], bool is1, int N, int M) { for ( int i = 0; i < N; i++) { for ( int j = 0; j < M; j++) { if (is1) { grid[i][j] = '0' ; is1 = false ; } else { grid[i][j] = '1' ; is1 = true ; } } if (M % 2 == 0) is1 = !is1; } } // Function to test if any one of them // matches with the given 2-D array bool testGrid( char testGrid[][1001], char Grid[][1001], int N, int M) { for ( int i = 0; i < N; i++) { for ( int j = 0; j < M; j++) { if (Grid[i][j] != '*' ) { if (Grid[i][j] != testGrid[i][j]) { return false ; } } } } return true ; } // Function to print the grid, if possible void printGrid( char grid[][1001], int N, int M) { for ( int i = 0; i < N; i++) { for ( int j = 0; j < M; j++) { cout << grid[i][j] << " " ; } cout << endl; } } // Function to check if the grid // can be made alternating or not void findPossibleGrid( int N, int M, char grid[][1001]) { // Grids to store the possible grids char gridTest1[N][1001], gridTest2[N][1001]; createGrid(gridTest1, true , N, M); createGrid(gridTest2, false , N, M); if (testGrid(gridTest1, grid, N, M)) { cout << "Yes\n" ; printGrid(gridTest1, N, M); } else if (testGrid(gridTest2, grid, N, M)) { cout << "Yes\n" ; printGrid(gridTest2, N, M); } else { cout << "No\n" ; } } // Driver Code int main() { int N = 4, M = 4; char grid[][1001] = { { '*' , '*' , '1' , '0' }, { '*' , '*' , '*' , '*' }, { '*' , '*' , '*' , '*' }, { '*' , '*' , '0' , '1' } }; findPossibleGrid(N, M, grid); return 0; } |
Java
// Java program for the above approach import java.io.*; class GFG{ // Function to create the possible grids public static void createGrid( char [][] grid, boolean is1, int N, int M) { for ( int i = 0 ; i < N; i++) { for ( int j = 0 ; j < M; j++) { if (is1) { grid[i][j] = '0' ; is1 = false ; } else { grid[i][j] = '1' ; is1 = true ; } } if (M % 2 == 0 ) is1 = !is1; } } // Function to test if any one of them // matches with the given 2-D array public static boolean testGrid( char [][] testGrid, char [][] Grid, int N, int M) { for ( int i = 0 ; i < N; i++) { for ( int j = 0 ; j < M; j++) { if (Grid[i][j] != '*' ) { if (Grid[i][j] != testGrid[i][j]) { return false ; } } } } return true ; } // Function to print the grid, if possible public static void printGrid( char [][] grid, int N, int M) { for ( int i = 0 ; i < N; i++) { for ( int j = 0 ; j < M; j++) { System.out.print(grid[i][j] + " " ); } System.out.println(); } } // Function to check if the grid // can be made alternating or not public static void findPossibleGrid( int N, int M, char [][] grid) { // Grids to store the possible grids char [][] gridTest1 = new char [N][ 1001 ]; char [][] gridTest2 = new char [N][ 1001 ]; createGrid(gridTest1, true , N, M); createGrid(gridTest2, false , N, M); if (testGrid(gridTest1, grid, N, M)) { System.out.println( "Yes" ); printGrid(gridTest1, N, M); } else if (testGrid(gridTest2, grid, N, M)) { System.out.println( "Yes" ); printGrid(gridTest2, N, M); } else { System.out.println( "No" ); } } // Driver code public static void main(String[] args) { int N = 4 , M = 4 ; char [][] grid = { { '*' , '*' , '1' , '0' }, { '*' , '*' , '*' , '*' }, { '*' , '*' , '*' , '*' }, { '*' , '*' , '0' , '1' } }; findPossibleGrid(N, M, grid); } } // This code is contributed by maddler |
Python3
# python 3 program for the above approach # Function to create the possible grids def createGrid(grid, is1, N, M): for i in range (N): for j in range (M): if (is1): grid[i][j] = '0' is1 = False else : grid[i][j] = '1' is1 = True if (M % 2 = = 0 ): is1 = True if is1 = = False else False # Function to test if any one of them # matches with the given 2-D array def testGrid(testGrid, Grid, N, M): for i in range (N): for j in range (M): if (Grid[i][j] ! = '*' ): if (Grid[i][j] ! = testGrid[i][j]): return False return True # Function to print the grid, if possible def printGrid(grid, N, M): for i in range (N): for j in range (M): print (grid[i][j],end = " " ) print ( "\n" ,end = "") # Function to check if the grid # can be made alternating or not def findPossibleGrid(N, M, grid): # Grids to store the possible grids gridTest1 = [['' for i in range ( 1001 )] for j in range (N)] gridTest2 = [['' for i in range ( 1001 )] for j in range (N)] createGrid(gridTest1, True , N, M) createGrid(gridTest2, False , N, M) if (testGrid(gridTest1, grid, N, M)): print ( "Yes" ) printGrid(gridTest1, N, M) elif (testGrid(gridTest2, grid, N, M)): print ( "Yes" ) printGrid(gridTest2, N, M) else : print ( "No" ) # Driver Code if __name__ = = '__main__' : N = 4 M = 4 grid = [[ '*' , '*' , '1' , '0' ], [ '*' , '*' , '*' , '*' ], [ '*' , '*' , '*' , '*' ], [ '*' , '*' , '0' , '1' ]] findPossibleGrid(N, M, grid) # This code is contributed by ipg2016107. |
C#
// C# program for the above approach using System; class GFG{ // Function to create the possible grids public static void createGrid( char [,] grid, bool is1, int N, int M) { for ( int i = 0; i < N; i++) { for ( int j = 0; j < M; j++) { if (is1) { grid[i, j] = '0' ; is1 = false ; } else { grid[i, j] = '1' ; is1 = true ; } } if (M % 2 == 0) is1 = !is1; } } // Function to test if any one of them // matches with the given 2-D array public static bool testGrid( char [,] testGrid, char [,] Grid, int N, int M) { for ( int i = 0; i < N; i++) { for ( int j = 0; j < M; j++) { if (Grid[i, j] != '*' ) { if (Grid[i, j] != testGrid[i, j]) { return false ; } } } } return true ; } // Function to print the grid, if possible public static void printGrid( char [,] grid, int N, int M) { for ( int i = 0; i < N; i++) { for ( int j = 0; j < M; j++) { Console.Write(grid[i, j] + " " ); } Console.WriteLine(); } } // Function to check if the grid // can be made alternating or not public static void findPossibleGrid( int N, int M, char [,] grid) { // Grids to store the possible grids char [,] gridTest1 = new char [N, 1001]; char [,] gridTest2 = new char [N, 1001]; createGrid(gridTest1, true , N, M); createGrid(gridTest2, false , N, M); if (testGrid(gridTest1, grid, N, M)) { Console.WriteLine( "Yes" ); printGrid(gridTest1, N, M); } else if (testGrid(gridTest2, grid, N, M)) { Console.WriteLine( "Yes" ); printGrid(gridTest2, N, M); } else { Console.WriteLine( "No" ); } } // Driver code public static void Main() { int N = 4, M = 4; char [,] grid = { { '*' , '*' , '1' , '0' }, { '*' , '*' , '*' , '*' }, { '*' , '*' , '*' , '*' }, { '*' , '*' , '0' , '1' } }; findPossibleGrid(N, M, grid); } } // This code is contributed by sanjoy_62 |
Javascript
<script> // JavaScript program for the above approach // Function to create the possible grids function createGrid(grid, is1, N, M) { for (let i = 0; i < N; i++) { for (let j = 0; j < M; j++) { if (is1) { grid[i][j] = "0" ; is1 = false ; } else { grid[i][j] = "1" ; is1 = true ; } } if (M % 2 == 0) is1 = !is1; } } // Function to test if any one of them // matches with the given 2-D array function testGrid(testGrid, Grid, N, M) { for (let i = 0; i < N; i++) { for (let j = 0; j < M; j++) { if (Grid[i][j] != "*" ) { if (Grid[i][j] != testGrid[i][j]) { return false ; } } } } return true ; } // Function to print the grid, if possible function printGrid(grid, N, M) { for (let i = 0; i < N; i++) { for (let j = 0; j < M; j++) { document.write(grid[i][j] + " " ); } document.write( "<br>" ); } } // Function to check if the grid // can be made alternating or not function findPossibleGrid(N, M, grid) { // Grids to store the possible grids let gridTest1 = new Array(N).fill(0).map(() => new Array(1001)); let gridTest2 = new Array(N).fill(0).map(() => new Array(1001)); createGrid(gridTest1, true , N, M); createGrid(gridTest2, false , N, M); if (testGrid(gridTest1, grid, N, M)) { document.write( "Yes<br>" ); printGrid(gridTest1, N, M); } else if (testGrid(gridTest2, grid, N, M)) { document.write( "Yes<br>" ); printGrid(gridTest2, N, M); } else { document.write( "No<br>" ); } } // Driver Code let N = 4, M = 4; let grid = [ [ "*" , "*" , "1" , "0" ], [ "*" , "*" , "*" , "*" ], [ "*" , "*" , "*" , "*" ], [ "*" , "*" , "0" , "1" ], ]; findPossibleGrid(N, M, grid); </script> |
Yes 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1
Time Complexity: O(N*M)
Auxiliary Space: O(N*M)
Efficient Approach: The idea is to use two variables instead of creating the 2-D arrays to maintain the possible alternating arrays. Follow the steps below to solve the problem:
- Define a function posCheck(char grid[][1001], int N, int M, char check) and perform the following tasks:
- Iterate over the range [0, N] using the variable i and performing the following tasks:
- Iterate over the range [0, M] using the variable j and performing the following tasks:
- If grid[i][j] is equal to ‘*’, then continue.
- Else, if (i+j)%2 is equal to 1 and grid[i][j] is not equal to check, then return false.
- Else, if (i+j)%2 is equal to 0 and grid[i][j] is equal to check, then return false.
- Iterate over the range [0, M] using the variable j and performing the following tasks:
- After performing the above steps, return the value of true as the answer.
- Iterate over the range [0, N] using the variable i and performing the following tasks:
- Define a function posCheck(char grid[][1001], int N, int M, char odd, char even) and perform the following tasks:
- Iterate over the range [0, N] using the variable i and performing the following tasks:
- Iterate over the range [0, M] using the variable j and performing the following tasks:
- If (i+j)%2 is equal to 1, then set the value of grid[i][j] to odd else even.
- Iterate over the range [0, M] using the variable j and performing the following tasks:
- Iterate over the range [0, N] using the variable i and performing the following tasks:
- Initialize the bool variable flag as true.
- Initialize the variables k and o as -1 to store the value of the first cell which doesn’t have the character ‘*’.
- Iterate over the range [0, N] using the variable i and performing the following tasks:
- Iterate over the range [0, M] using the variable j and performing the following tasks:
- If Grid[i][j] is not equal to ‘*’, then set the value of k as i and o as j and break.
- If k is not equal to -1, then break.
- Iterate over the range [0, M] using the variable j and performing the following tasks:
- If k is not equal to -1, then call the function PosCheck(grid, n, m, ‘1’) and store the value returned by the function in the variable flag and if flag is true, then call the function fill(grid, n, m, ‘1’, ‘0’) to fill the grid in one of the possible ways.
- If flag is false, then call the function PosCheck(grid, n, m, ‘0’) and store the value returned by the function in the variable flag and if flag is true, then call the function fill(grid, n, m, ‘0’, ‘1’) to fill the grid in one of the possible ways.
- If k is equal to -1, then, initialize the char variable h as ‘0’.
- Iterate over the range [0, M] using the variable i and performing the following tasks:
- Set the value of grid[0][i] as h and if h is ‘0‘, then set it to ‘1‘, otherwise ‘0’.
- Iterate over the range [0, N] using the variable i and performing the following tasks:
- Iterate over the range [0, M] using the variable j and performing the following tasks:
- If i-1 is less than 0, then continue.
- If grid[i-1][j] is ‘1’, then set it to ‘0’, else ‘1’.
- Iterate over the range [0, M] using the variable j and performing the following tasks:
- Set the value of flag as true as the grid is made alternating.
- If flag is false, then print “NO”.
- Else, print “YES” and print the elements of the grid[][].
Below is the implementation of the above approach.
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to check for the grid in // one of the alternating ways bool PosCheck( char a[][1001], int n, int m, char check) { // Iterate over the range for ( int i = 0; i < n; i++) { // Iterate over the range for ( int j = 0; j < m; j++) { if (a[i][j] == '*' ) { continue ; } else { // (i+j)%2==1 cells should be with // the character check and the rest // should be with the other character if (((i + j) & 1) && a[i][j] != check) { return false ; } if (!((i + j) & 1) && a[i][j] == check) { return false ; } } } } return true ; } // Function to fill the grid in a possible way void fill( char a[][1001], int n, int m, char odd, char even) { for ( int i = 0; i < n; i++) { for ( int j = 0; j < m; j++) { if ((i + j) & 1) { a[i][j] = odd; } else { a[i][j] = even; } } } } // Function to find if the grid can be made alternating void findPossibleGrid( int n, int m, char a[][1001]) { bool flag = true ; int k = -1, o = -1; for ( int i = 0; i < n; i++) { for ( int j = 0; j < m; j++) { if (a[i][j] != '*' ) { // If grid contains atleast // one 1 or 0 k = i; o = j; break ; } } if (k != -1) { break ; } } if (k != -1) { flag = PosCheck(a, n, m, '1' ); if (flag) { fill(a, n, m, '1' , '0' ); } else { flag = PosCheck(a, n, m, '0' ); if (flag) { fill(a, n, m, '0' , '1' ); } } } else { // Fill the grid in any possible way char h = '1' ; for ( int i = 0; i < m; i++) { a[0][i] = h; if (h == '1' ) { h = '0' ; } else { h = '1' ; } } for ( int i = 0; i < n; i++) { for ( int j = 0; j < m; j++) { if (i - 1 < 0) { continue ; } if (a[i - 1][j] == '1' ) { a[i][j] = '0' ; } else { a[i][j] = '1' ; } } } flag = true ; } if (!flag) { cout << "NO\n" ; } else { cout << "YES\n" ; for ( int i = 0; i < n; i++) { for ( int j = 0; j < m; j++) { cout << a[i][j]; } cout << endl; } } } // Driver Code int main() { int n = 4, m = 4; char grid[][1001] = { { '*' , '*' , '1' , '0' }, { '*' , '*' , '*' , '*' }, { '*' , '*' , '*' , '*' }, { '*' , '*' , '0' , '1' } }; findPossibleGrid(n, m, grid); return 0; } |
Java
/*package whatever //do not write package name here */ import java.io.*; class GFG { public static boolean PosCheck( char [][] a, int n, int m, char check) { // Iterate over the range for ( int i = 0 ; i < n; i++) { // Iterate over the range for ( int j = 0 ; j < m; j++) { if (a[i][j] == '*' ) { continue ; } else { // (i+j)%2==1 cells should be with // the character check and the rest // should be with the other character if ((((i + j) & 1 ) == 1 ) && a[i][j] != check) { return false ; } if (!(((i + j) & 1 ) == 1 ) && a[i][j] == check) { return false ; } } } } return true ; } // Function to fill the grid in a possible way public static void fill( char [][] a, int n, int m, char odd, char even) { for ( int i = 0 ; i < n; i++) { for ( int j = 0 ; j < m; j++) { if (((i + j) & 1 ) == 1 ) { a[i][j] = odd; } else { a[i][j] = even; } } } } // Function to find if the grid can be made alternating public static void findPossibleGrid( int n, int m, char [][] a) { boolean flag = true ; int k = - 1 , o = - 1 ; for ( int i = 0 ; i < n; i++) { for ( int j = 0 ; j < m; j++) { if (a[i][j] != '*' ) { // If grid contains atleast // one 1 or 0 k = i; o = j; break ; } } if (k != - 1 ) { break ; } } if (k != - 1 ) { flag = PosCheck(a, n, m, '1' ); if (flag) { fill(a, n, m, '1' , '0' ); } else { flag = PosCheck(a, n, m, '0' ); if (flag) { fill(a, n, m, '0' , '1' ); } } } else { // Fill the grid in any possible way char h = '1' ; for ( int i = 0 ; i < m; i++) { a[ 0 ][i] = h; if (h == '1' ) { h = '0' ; } else { h = '1' ; } } for ( int i = 0 ; i < n; i++) { for ( int j = 0 ; j < m; j++) { if (i - 1 < 0 ) { continue ; } if (a[i - 1 ][j] == '1' ) { a[i][j] = '0' ; } else { a[i][j] = '1' ; } } } flag = true ; } if (!flag) { System.out.println( "No" ); } else { System.out.println( "Yes" ); for ( int i = 0 ; i < n; i++) { for ( int j = 0 ; j < m; j++) { System.out.print(a[i][j]); } System.out.println(); } } } // Driver Code public static void main(String[] args) { int n = 4 , m = 4 ; char [][] grid = { { '*' , '*' , '1' , '0' }, { '*' , '*' , '*' , '*' }, { '*' , '*' , '*' , '*' }, { '*' , '*' , '0' , '1' } }; findPossibleGrid(n, m, grid); } } // This code is contributed by maddler. |
Python3
# Python program for the above approach # Function to check for the grid in # one of the alternating ways def PosCheck(a, n, m, check): # Iterate over the range for i in range (n): # Iterate over the range for j in range (m): if (a[i][j] = = "*" ): continue else : # (i+j)%2==1 cells should be with # the character check and the rest # should be with the other character if (((i + j) & 1 ) and a[i][j] ! = check): return False if (((i + j) & 1 ) = = 0 and a[i][j] = = check): return False return True # Function to fill the grid in a possible way def fill(a, n, m, odd, even): for i in range (n): for j in range (m): if ((i + j) & 1 ): a[i][j] = odd else : a[i][j] = even # Function to find if the grid can be made alternating def findPossibleGrid(n, m, a): flag,k,O = True , - 1 , - 1 for i in range (n): for j in range (m): if (a[i][j] ! = "*" ): # If grid contains atleast # one 1 or 0 k = i O = j break if (k ! = - 1 ): break if (k ! = - 1 ): flag = PosCheck(a, n, m, "1" ) if (flag): fill(a, n, m, "1" , "0" ) else : flag = PosCheck(a, n, m, "0" ) if (flag): fill(a, n, m, "0" , "1" ) else : # Fill the grid in any possible way h = "1" for i in range (m): a[ 0 ][i] = h if (h = = "1" ): h = "0" else : h = "1" for i in range (n): for j in range (m): if (i - 1 < 0 ): continue if (a[i - 1 ][j] = = "1" ): a[i][j] = "0" else : a[i][j] = "1" flag = True if (flag = = 0 ): print ( "NO" ) else : print ( "YES" ) for i in range (n): for j in range (m): print (a[i][j],end = "") print () # Driver Code n,m = 4 , 4 grid = [ [ "*" , "*" , "1" , "0" ], [ "*" , "*" , "*" , "*" ], [ "*" , "*" , "*" , "*" ], [ "*" , "*" , "0" , "1" ], ] findPossibleGrid(n, m, grid) # This code is contributed by shinjanpatra |
C#
// C# program for the above approach using System; using System.Collections.Generic; class GFG{ public static bool PosCheck( char [,] a, int n, int m, char check) { // Iterate over the range for ( int i = 0; i < n; i++) { // Iterate over the range for ( int j = 0; j < m; j++) { if (a[i, j] == '*' ) { continue ; } else { // (i+j)%2==1 cells should be with // the character check and the rest // should be with the other character if ((((i + j) & 1) == 1) && a[i, j] != check) { return false ; } if (!(((i + j) & 1) == 1) && a[i, j] == check) { return false ; } } } } return true ; } // Function to fill the grid in a possible way public static void fill( char [,] a, int n, int m, char odd, char even) { for ( int i = 0; i < n; i++) { for ( int j = 0; j < m; j++) { if (((i + j) & 1) == 1) { a[i, j] = odd; } else { a[i, j] = even; } } } } // Function to find if the grid can be made alternating public static void findPossibleGrid( int n, int m, char [,] a) { bool flag = true ; int k = -1, o = -1; for ( int i = 0; i < n; i++) { for ( int j = 0; j < m; j++) { if (a[i, j] != '*' ) { // If grid contains atleast // one 1 or 0 k = i; o = j; break ; } } if (k != -1) { break ; } } if (k != -1) { flag = PosCheck(a, n, m, '1' ); if (flag) { fill(a, n, m, '1' , '0' ); } else { flag = PosCheck(a, n, m, '0' ); if (flag) { fill(a, n, m, '0' , '1' ); } } } else { // Fill the grid in any possible way char h = '1' ; for ( int i = 0; i < m; i++) { a[0, i] = h; if (h == '1' ) { h = '0' ; } else { h = '1' ; } } for ( int i = 0; i < n; i++) { for ( int j = 0; j < m; j++) { if (i - 1 < 0) { continue ; } if (a[i - 1, j] == '1' ) { a[i, j] = '0' ; } else { a[i, j] = '1' ; } } } flag = true ; } if (!flag) { Console.WriteLine( "No" ); } else { Console.WriteLine( "Yes" ); for ( int i = 0; i < n; i++) { for ( int j = 0; j < m; j++) { Console.Write(a[i, j]); } Console.WriteLine(); } } } // Driver Code public static void Main() { int n = 4, m = 4; char [,] grid = { { '*' , '*' , '1' , '0' }, { '*' , '*' , '*' , '*' }, { '*' , '*' , '*' , '*' }, { '*' , '*' , '0' , '1' } }; findPossibleGrid(n, m, grid); } } // This code is contributed by splevel62. |
Javascript
<script> // Javascript program for the above approach // Function to check for the grid in // one of the alternating ways function PosCheck(a, n, m, check) { // Iterate over the range for (let i = 0; i < n; i++) { // Iterate over the range for (let j = 0; j < m; j++) { if (a[i][j] == "*" ) { continue ; } else { // (i+j)%2==1 cells should be with // the character check and the rest // should be with the other character if ((i + j) & 1 && a[i][j] != check) { return false ; } if (!((i + j) & 1) && a[i][j] == check) { return false ; } } } } return true ; } // Function to fill the grid in a possible way function fill(a, n, m, odd, even) { for (let i = 0; i < n; i++) { for (let j = 0; j < m; j++) { if ((i + j) & 1) { a[i][j] = odd; } else { a[i][j] = even; } } } } // Function to find if the grid can be made alternating function findPossibleGrid(n, m, a) { let flag = true ; let k = -1, o = -1; for (let i = 0; i < n; i++) { for (let j = 0; j < m; j++) { if (a[i][j] != "*" ) { // If grid contains atleast // one 1 or 0 k = i; o = j; break ; } } if (k != -1) { break ; } } if (k != -1) { flag = PosCheck(a, n, m, "1" ); if (flag) { fill(a, n, m, "1" , "0" ); } else { flag = PosCheck(a, n, m, "0" ); if (flag) { fill(a, n, m, "0" , "1" ); } } } else { // Fill the grid in any possible way let h = "1" ; for (let i = 0; i < m; i++) { a[0][i] = h; if (h == "1" ) { h = "0" ; } else { h = "1" ; } } for (let i = 0; i < n; i++) { for (let j = 0; j < m; j++) { if (i - 1 < 0) { continue ; } if (a[i - 1][j] == "1" ) { a[i][j] = "0" ; } else { a[i][j] = "1" ; } } } flag = true ; } if (!flag) { document.write( "NO<br>" ); } else { document.write( "YES<br>" ); for (let i = 0; i < n; i++) { for (let j = 0; j < m; j++) { document.write(a[i][j]); } document.write( "<br>" ); } } } // Driver Code let n = 4, m = 4; let grid = [ [ "*" , "*" , "1" , "0" ], [ "*" , "*" , "*" , "*" ], [ "*" , "*" , "*" , "*" ], [ "*" , "*" , "0" , "1" ], ]; findPossibleGrid(n, m, grid); // This code is contributed by saurabh_jaiswal. </script> |
YES 1010 0101 1010 0101
Time Complexity: O(N*M)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!