Monday, November 25, 2024
Google search engine
HomeData Modelling & AICheck if A can be converted to B by reducing with a...

Check if A can be converted to B by reducing with a Prime number

Given two integers, A and B, the task is to find whether it is possible to make A equal to B if you are allowed to subtract a prime number P any number of times from A.
Examples: 
 

Input: A = 10, B = 4 
Output: YES 
Explanation: 
Let P = 2 and after subtracting it 
three times from A
Input: A = 41, B = 40 
Output: NO 
 

 

Approach: The key observation in the problem is we have to represent the number A as 

A = B + X * P
 

, As we know every number is divisible by some prime number except 1. Therefore if we find the difference of the number 

A - B
 

and if the difference is greater than 1 then both the number can be made equal by subtracting a prime number X times from A.
Below is the implementation of the above approach:
 

 

C++




// C++ implementation to find if
// it is possible to make a equal to b
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find if
// it is possible to make
// A equal to B
bool isPossible(int A, int B)
{
    return (A - B > 1);
}
 
// Driver Code
int main()
{
    int A = 10, B = 4;
     
    // Function Call
    if (isPossible(A, B))
        cout << "Yes";
    else
        cout << "No";
    return 0;
}


Java




// Java implementation to find if
// it is possible to make a equal to b
class GFG{
 
// Function to find if
// it is possible to make
// A equal to B
static boolean isPossible(int A, int B)
{
    return (A - B > 1);
}
 
// Driver Code
public static void main (String[] args)
{
    int A = 10, B = 4;
     
    // Function Call
    if (isPossible(A, B))
        System.out.print("Yes");
    else
        System.out.print("No");
}
}
 
// This code is contributed by shivanisinghss2110


Python3




# Python3 implementation to find if
# it is possible to make a equal to b
 
# Function to find if
# it is possible to make
# A equal to B
def isPossible(A, B):
 
    return (A - B > 1);
 
# Driver Code
A = 10; B = 4;
     
# Function Call
if (isPossible(A, B)):
    print("Yes");
else:
    print("No");
 
# This code is contributed by Code_Mech


C#




// C# implementation to find if
// it is possible to make a equal to b
using System;
class GFG{
 
// Function to find if
// it is possible to make
// A equal to B
static bool isPossible(int A, int B)
{
    return (A - B > 1);
}
 
// Driver Code
public static void Main()
{
    int A = 10, B = 4;
     
    // Function Call
    if (isPossible(A, B))
        Console.Write("Yes");
    else
        Console.Write("No");
}
}
 
// This code is contributed by Code_Mech


Javascript




<script>
 
    // Javascript implementation to find if
    // it is possible to make a equal to b
     
    // Function to find if
    // it is possible to make
    // A equal to B
    function isPossible(A, B)
    {
        return (A - B > 1);
    }
       
    let A = 10, B = 4;
       
    // Function Call
    if (isPossible(A, B))
        document.write("Yes");
    else
        document.write("No");
         
</script>


Output: 
Yes
 

Time Complexity: O(1).

Space Complexity: O(1) as no extra space has been used.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments