Saturday, November 16, 2024
Google search engine
HomeLanguagesWays to filter Pandas DataFrame by column values

Ways to filter Pandas DataFrame by column values

Filtering a Pandas DataFrame by way of column values is a commonplace operation while running with information in Python. You can use various methods and techniques to achieve this. Here are numerous ways to filter out a Pandas DataFrame through column values.

In this post, we will see different ways to filter Pandas Dataframe by column values. First, Let’s create a Dataframe:

Python3




# importing pandas
import pandas as pd
   
# declare a dictionary
record = {
 
 'Name' : ['Ankit', 'Swapnil', 'Aishwarya',
          'Priyanka', 'Shivangi', 'Shaurya' ],
   
 'Age' : [22, 20, 21, 19, 18, 22],
   
 'Stream' : ['Math', 'Commerce', 'Science',
            'Math', 'Math', 'Science'],
   
 'Percentage' : [90, 90, 96, 75, 70, 80] }
   
# create a dataframe
dataframe = pd.DataFrame(record,
                         columns = ['Name', 'Age',
                                    'Stream', 'Percentage'])
# show the Dataframe
print("Given Dataframe :\n", dataframe)


Output:

Dataframe

Selecting rows of Pandas Dataframe based on particular column value using ‘>’, ‘=’, ‘=’, ‘<=’, ‘!=’ operator.

Example 1: Selecting all the rows from the given Dataframe in which ‘Percentage’ is greater than 75 using [ ].

Python3




# selecting rows based on condition
rslt_df = dataframe[dataframe['Percentage'] > 70]
   
print('\nResult dataframe :\n', rslt_df)


Output:

output dataframe

Example 2: Selecting all the rows from the given Dataframe in which ‘Percentage’ is greater than 70 using loc[ ]

Python3




# selecting rows based on condition
rslt_df = dataframe.loc[dataframe['Percentage'] > 70]
   
print('\nResult dataframe :\n',
      rslt_df)


Output:

output dataframe-1

Selecting those rows of Pandas Dataframe whose column value is present in the list using isin() method of the dataframe.

Example 1: Selecting all the rows from the given dataframe in which ‘Stream’ is present in the options list using [ ].

Python3




options = ['Science', 'Commerce']
   
# selecting rows based on condition
rslt_df = dataframe[dataframe['Stream'].isin(options)]
   
print('\nResult dataframe :\n',
      rslt_df)


Output:

output dataframe-2

Example 2: Selecting all the rows from the given dataframe in which ‘Stream’ is present in the options list using loc[ ].

Python




options = ['Science', 'Commerce']
   
# selecting rows based on condition
rslt_df = dataframe.loc[dataframe['Stream'].isin(options)]
   
print('\nResult dataframe :\n',
      rslt_df)


Output:

output dataframe-3

Selecting rows of  Pandas Dataframe based on multiple column conditions using ‘&’ operator. 

Example1: Selecting all the rows from the given Dataframe in which ‘Age’ is equal to 22 and ‘Stream’ is present in the options list using [ ].

Python3




options = ['Commerce' ,'Science']
   
# selecting rows based on condition
rslt_df = dataframe[(dataframe['Age'] == 22) &
          dataframe['Stream'].isin(options)]
   
print('\nResult dataframe :\n',
      rslt_df)


Output:

output dataframe-4

Example 2: Selecting all the rows from the given Dataframe in which ‘Age’ is equal to 22 and ‘Stream’ is present in the options list using loc[ ].

Python3




options = ['Commerce', 'Science']
  
# selecting rows based on condition
rslt_df = dataframe.loc[(dataframe['Age'] == 22) &
              dataframe['Stream'].isin(options)]
   
print('\nResult dataframe :\n',
      rslt_df)


Output:

output dataframe-5

RELATED ARTICLES

Most Popular

Recent Comments