Wednesday, November 20, 2024
Google search engine
HomeData Modelling & AISort a given Array by swapping only pairs with GCD as 1

Sort a given Array by swapping only pairs with GCD as 1

Given an array arr[], the task is to check if it is possible to sort the given array using any number of operations where at each operation, two elements arr[i] and arr[j] can be swapped if GCD of arr[i] and arr[j] is 1.

Example:

Input: a = {3, 2, 1}
Output: Possible
Explanation: The given array can be sorted by swapping arr[0] and arr[2], i.e, 3 and 1 as gcd(3, 1) = 1. 

Input: arr[] = {10, 15, 6, 2, 9}
Output: Not Possible
Explanation: It is not possible to sort the given array using any sequence of valid operations.

Input: arr[] = {1, 9, 3, 7, 2, 4}
Output: Possible

Approach: The given problem can be solved with the help of recursion and backtracking. Create a recursive function to iterate over all inversions of the given array, swap the inverted elements one at a time if their GCD is 1 and recursively call for the remaining array. At any point, if the array is sorted which can be checked using the is_sorted() function, return true otherwise, return false.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Recursive function to check if it is
// possible to sort the given array by
// swapping elements with their GCD = 1
bool isPossible(vector<int> arr)
{
    // If the given array is sorted
    if (is_sorted(arr.begin(), arr.end())) {
        return true;
    }
 
    // Stores if it is possible to sort
    // the given array
    bool res = false;
 
    // Iterate for all possible pairs of
    // Inversions
    for (int i = 0; i < arr.size(); i++) {
        for (int j = i + 1; j < arr.size(); j++) {
 
            // If for current inversion,
            // GCD of both elements is 1,
            // GCD of both the indices
            if (arr[i] > arr[j]
                && __gcd(arr[i], arr[j]) == 1) {
                swap(arr[i], arr[j]);
 
                // Recursive Call for the
                // remaining array
                res = (res | isPossible(arr));
 
                // Backtrack
                swap(arr[i], arr[j]);
            }
        }
    }
 
    // Return Answer
    return res;
}
 
// Driver Code
int main()
{
    vector<int> arr = { 1, 9, 3, 7, 2, 4 };
 
    if (isPossible(arr))
        cout << "Possible";
    else
        cout << "Not Possible";
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Recursive function to check if it is
// possible to sort the given array by
// swapping elements with their GCD = 1
static boolean isPossible(int[] arr)
{
   
    // If the given array is sorted
    if (is_sorted(arr)) {
        return true;
    }
 
    // Stores if it is possible to sort
    // the given array
    boolean res = false;
 
    // Iterate for all possible pairs of
    // Inversions
    for (int i = 0; i < arr.length; i++) {
        for (int j = i + 1; j < arr.length; j++) {
 
            // If for current inversion,
            // GCD of both elements is 1,
            // GCD of both the indices
            if (arr[i] > arr[j]
                && __gcd(arr[i], arr[j]) == 1) {
                arr = swap(arr,i,j);
 
                // Recursive Call for the
                // remaining array
                res = (res | isPossible(arr));
 
                // Backtrack
                arr = swap(arr,i,j);
            }
        }
    }
 
    // Return Answer
    return res;
}
static int __gcd(int a, int b) 
    return b == 0? a:__gcd(b, a % b);    
}
static int[] swap(int []arr, int i, int j){
    int temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
    return arr;
}
private static boolean is_sorted(int[] a) {
    int i;
    for(i = 0; i < a.length - 1 && a[i] < a[i+1]; i++){}
    return (i == a.length - 1);
}
 
public static void main(String[] args)
{
    int[] arr = { 1, 9, 3, 7, 2, 4 };
 
    if (isPossible(arr))
        System.out.print("Possible");
    else
        System.out.print("Not Possible");
 
}
}
 
// This code is contributed by shikhasingrajput


Python3




# Python code for the above approach
 
# Recursive function to return gcd of a and b
def __gcd(a, b):
 
    # Everything divides 0
    if (a == 0):
        return b
    if (b == 0):
        return a
 
    # base case
    if (a == b):
        return a
 
    # a is greater
    if (a > b):
        return __gcd(a - b, b)
    return __gcd(a, b - a)
 
# Recursive function to check if it is
# possible to sort the given array by
# swapping elements with their GCD = 1
def isPossible(arr):
 
    # If the given array is sorted
    brr = sorted(arr)
    if (arr == brr):
        return True
 
    # Stores if it is possible to sort
    # the given array
    res = False
 
    # Iterate for all possible pairs of
    # Inversions
    for i in range(len(arr)):
        for j in range(i + 1, len(arr)):
 
            # If for current inversion,
            # GCD of both elements is 1,
            # GCD of both the indices
            if (arr[i] > arr[j] and __gcd(arr[i], arr[j]) == 1):
                temp = arr[i]
                arr[i] = arr[j]
                arr[j] = temp
 
                # Recursive Call for the
                # remaining array
                res = (res | isPossible(arr))
 
                # Backtrack
                temp = arr[i]
                arr[i] = arr[j]
                arr[j] = temp
 
    # Return Answer
    return res
 
# Driver Code
arr = [1, 9, 3, 7, 2, 4]
if (isPossible(arr)):
    print("Possible")
else:
    print("Not Possible")
 
# This code is contributed by Saurabh Jaiswal


C#




// C# program for the above approach
using System;
 
public class GFG{
 
// Recursive function to check if it is
// possible to sort the given array by
// swapping elements with their GCD = 1
static bool isPossible(int[] arr)
{
   
    // If the given array is sorted
    if (is_sorted(arr)) {
        return true;
    }
 
    // Stores if it is possible to sort
    // the given array
    bool res = false;
 
    // Iterate for all possible pairs of
    // Inversions
    for (int i = 0; i < arr.Length; i++) {
        for (int j = i + 1; j < arr.Length; j++) {
 
            // If for current inversion,
            // GCD of both elements is 1,
            // GCD of both the indices
            if (arr[i] > arr[j]
                && __gcd(arr[i], arr[j]) == 1) {
                arr = swap(arr,i,j);
 
                // Recursive Call for the
                // remaining array
                res = (res | isPossible(arr));
 
                // Backtrack
                arr = swap(arr,i,j);
            }
        }
    }
 
    // Return Answer
    return res;
}
static int __gcd(int a, int b) 
    return b == 0? a:__gcd(b, a % b);    
}
static int[] swap(int []arr, int i, int j){
    int temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
    return arr;
}
private static bool is_sorted(int[] a) {
    int i;
    for(i = 0; i < a.Length - 1 && a[i] < a[i+1]; i++){}
    return (i == a.Length - 1);
}
 
public static void Main(String[] args)
{
    int[] arr = { 1, 9, 3, 7, 2, 4 };
 
    if (isPossible(arr))
        Console.Write("Possible");
    else
        Console.Write("Not Possible");
 
}
}
 
// This code is contributed by 29AjayKumar


Javascript




  <script>
        // JavaScript code for the above approach
 
        // Recursive function to return gcd of a and b
        function __gcd(a, b)
        {
         
            // Everything divides 0
            if (a == 0)
                return b;
            if (b == 0)
                return a;
                 
            // base case
            if (a == b)
                return a;
                 
            // a is greater
            if (a > b)
                return __gcd(a - b, b);
            return __gcd(a, b - a);
        }
         
        // Recursive function to check if it is
        // possible to sort the given array by
        // swapping elements with their GCD = 1
        function isPossible(arr)
        {
         
            // If the given array is sorted
            brr = arr.sort(function (a, b) { return a - b })
            if (arr == brr) {
                return true;
            }
             
            // Stores if it is possible to sort
            // the given array
            let res = false;
             
            // Iterate for all possible pairs of
            // Inversions
            for (let i = 0; i < arr.length; i++)
            {
                for (let j = i + 1; j < arr.length; j++)
                {
                 
                    // If for current inversion,
                    // GCD of both elements is 1,
                    // GCD of both the indices
                    if (arr[i] > arr[j]
                        && __gcd(arr[i], arr[j]) == 1) {
                        let temp = arr[i];
                        arr[i] = arr[j];
                        arr[j] = temp;
                         
                        // Recursive Call for the
                        // remaining array
                        res = (res | isPossible(arr));
                         
                        // Backtrack
                        temp = arr[i];
                        arr[i] = arr[j];
                        arr[j] = temp;
                    }
                }
            }
             
            // Return Answer
            return res;
        }
         
        // Driver Code
        let arr = [1, 9, 3, 7, 2, 4];
        if (isPossible(arr))
            document.write("Possible")
        else
            document.write("Not Possible");
             
// This code is contributed by Potta Lokesh
 
    </script>


Output

Possible

Time Complexity: O(N2N!)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
16 Dec, 2021
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments