In this article, We are going to see seaborn color_palette(), which can be used for coloring the plot. Using the palette we can generate the point with different colors. In this below example we can see the palette can be responsible for generating the different colormap values.
Syntax: seaborn.color_palette(palette=None, n_colors=None, desat=None)
Parameters:
- palette: Name of palette or None to return current palette.
- n_colors: Number of colors in the palette.
- desat: Proportion to desaturate each color.
Returns: list of RGB tuples or matplotlib.colors.Colormap
We will classify the different ways for using color_palette() types −
- Qualitative
- Sequential
- Diverging
Qualitative
A qualitative palette is used when the variable is categorical in nature, the color assigned to each group need to be distinct. Each possible value of the variable is assigned one color from a qualitative palette within a plot as shown in figure.
Example:
Python3
from matplotlib import pyplot as plt import seaborn as sns current_palette = sns.color_palette() sns.palplot(current_palette) plt.show() |
Output:
Sequential
In sequential palettes color moved sequentially from a lighter to a darker. When the variable assigned to be colored is numeric or has inherently ordered values, then it can be depicted with a sequential palette as shown in figure.
Example:
Python3
from matplotlib import pyplot as plt import seaborn as sns current_palette = sns.color_palette() sns.palplot(sns.color_palette( "Greys" )) plt.show() |
Output:
Diverging
When we work on mixed value like +ve and -ve(low and high values) then diverging palette is the best suit for visualization.
Example:
Python3
from matplotlib import pyplot as plt import seaborn as sns current_palette = sns.color_palette() sns.palplot(sns.color_palette( "terrain_r" , 7 )) plt.show() |
Output:
Let’s understand this with some examples:
Example 1:
In this example, we have used sns.color_palette() to construct a colormap and sns.palplot() to display the colors present in the colormap with “deep” attributes.
Python3
# import module import pandas as pd import seaborn as sns sns.palplot(sns.color_palette( "deep" , 10 )) |
Output:
The possible value of the palette are:
‘Accent’, ‘Accent_r’, ‘Blues’, ‘Blues_r’, ‘BrBG’, ‘BrBG_r’, ‘BuGn’, ‘BuGn_r’, ‘BuPu’, ‘BuPu_r’, ‘CMRmap’, ‘CMRmap_r’, ‘Dark2’, ‘Dark2_r’, ‘GnBu’, ‘GnBu_r’, ‘Greens’, ‘Greens_r’, ‘Greys’, ‘Greys_r’, ‘OrRd’, ‘OrRd_r’, ‘Oranges’, ‘Oranges_r’, ‘PRGn’, ‘PRGn_r’, ‘Paired’, ‘Paired_r’, ‘Pastel1’, ‘Pastel1_r’, ‘Pastel2’, ‘Pastel2_r’, ‘PiYG’, ‘PiYG_r’, ‘PuBu’, ‘PuBuGn’, ‘PuBuGn_r’, ‘PuBu_r’, ‘PuOr’, ‘PuOr_r’, ‘PuRd’, ‘PuRd_r’, ‘Purples’, ‘Purples_r’, ‘RdBu’, ‘RdBu_r’, ‘RdGy’, ‘RdGy_r’, ‘RdPu’, ‘RdPu_r’, ‘RdYlBu’, ‘RdYlBu_r’, ‘RdYlGn’, ‘RdYlGn_r’, ‘Reds’, ‘Reds_r’, ‘Set1’, ‘Set1_r’, ‘Set2’, ‘Set2_r’, ‘Set3’, ‘Set3_r’, ‘Spectral’, ‘Spectral_r’, ‘Wistia’, ‘Wistia_r’, ‘YlGn’, ‘YlGnBu’, ‘YlGnBu_r’, ‘YlGn_r’, ‘YlOrBr’, ‘YlOrBr_r’, ‘YlOrRd’, ‘YlOrRd_r’, ‘afmhot’, ‘afmhot_r’, ‘autumn’, ‘autumn_r’, ‘binary’, ‘binary_r’, ‘bone’, ‘bone_r’, ‘brg’, ‘brg_r’, ‘bwr’, ‘bwr_r’, ‘cividis’, ‘cividis_r’, ‘cool’, ‘cool_r’, ‘coolwarm’, ‘coolwarm_r’, ‘copper’, ‘copper_r’, ‘cubehelix’, ‘cubehelix_r’, ‘flag’, ‘flag_r’, ‘gist_earth’, ‘gist_earth_r’, ‘gist_gray’, ‘gist_gray_r’, ‘gist_heat’, ‘gist_heat_r’, ‘gist_ncar’, ‘gist_ncar_r’, ‘gist_rainbow’, ‘gist_rainbow_r’, ‘gist_stern’, ‘gist_stern_r’, ‘gist_yarg’, ‘gist_yarg_r’, ‘gnuplot’, ‘gnuplot2’, ‘gnuplot2_r’, ‘gnuplot_r’, ‘gray’, ‘gray_r’, ‘hot’, ‘hot_r’, ‘hsv’, ‘hsv_r’, ‘icefire’, ‘icefire_r’, ‘inferno’, ‘inferno_r’, ‘jet’, ‘jet_r’, ‘magma’, ‘magma_r’, ‘mako’, ‘mako_r’, ‘nipy_spectral’, ‘nipy_spectral_r’, ‘ocean’, ‘ocean_r’, ‘pink’, ‘pink_r’, ‘plasma’, ‘plasma_r’, ‘prism’, ‘prism_r’, ‘rainbow’, ‘rainbow_r’, ‘rocket’, ‘rocket_r’, ‘seismic’, ‘seismic_r’, ‘spring’, ‘spring_r’, ‘summer’, ‘summer_r’, ‘tab10’, ‘tab10_r’,’tab20′, ‘tab20_r’, ‘tab20b’, ‘tab20b_r’, ‘tab20c’, ‘tab20c_r’, ‘terrain’, ‘terrain_r’, ‘turbo’, ‘turbo_r’, ‘twilight’, ‘twilight_r’, ‘twilight_shifted’, ‘twilight_shifted_r’, ‘viridis’, ‘viridis_r’, ‘vlag’, ‘vlag_r’, ‘winter’, ‘winter_r’
Example 2:
In this example, we have used sns.color_palette() to construct a colormap and sns.palplot() to display the colors present in the colormap with “muted” attributes.
Python3
import pandas as pd import seaborn as sns sns.palplot(sns.color_palette( "muted" , 10 )) |
Output:
Example 3:
In this example, we have used sns.color_palette() to construct a colormap and sns.palplot() to display the colors present in the colormap with “bright” attributes.
Python3
import pandas as pd import seaborn as sns sns.palplot(sns.color_palette( "bright" , 10 )) |
Output:
Example 4:
In this example, we have used sns.color_palette() to construct a colormap and sns.palplot() to display the colors present in the colormap with “dark” attributes.
Python3
import pandas as pd import seaborn as sns sns.palplot(sns.color_palette( "dark" , 10 )) |
Output:
Example 5:
In this example, we have used sns.color_palette() to construct a colormap and sns.palplot() to display the colors present in the colormap with “BuGn_r” attributes.
Python3
import pandas as pd import seaborn as sns sns.palplot(sns.color_palette( "BuGn_r" , 10 )) |
Output:
Example 6:
In this example, creating an own color palette and set it as the current color palette
Python3
import pandas as pd import seaborn as sns color = [ "green" , "White" , "Red" , "Yellow" , "Green" , "Grey" ] sns.set_palette(color) sns.palplot(sns.color_palette()) |
Output: