Let’s discuss a program To change the values from a column that contains the values ‘YES’ and ‘NO’ with TRUE and FALSE.
First, Let’s see a dataset.
Code:
Python3
# import pandas library import pandas as pd # load csv file df = pd.read_csv( "supermarkets.csv" ) # show the dataframe df |
Output :
For downloading the used csv file Click Here.
Now, Let’s see the multiple ways to do this task:
Method 1: Using Series.map().
This method is used to map values from two series having one column the same.
Syntax: Series.map(arg, na_action=None).
Return type: Pandas Series with the same as an index as a caller.
Example: Replace the ‘commissioned’ column contains the values ‘yes’ and ‘no’ with True and False.
Code:
Python3
# import pandas library import pandas as pd # load csv file df = pd.read_csv( "supermarkets.csv" ) # replace the ‘commissioned' column contains # the values 'yes' and 'no' with # True and False: df[ 'commissioned' ] = df[ 'commissioned' ]. map ( { 'yes' : True , 'no' : False }) # show the dataframe df |
Output :
Method 2: Using DataFrame.replace().
This method is used to replace a string, regex, list, dictionary, series, number, etc. from a data frame.
Syntax: DataFrame.replace(to_replace=None, value=None, inplace=False, limit=None, regex=False, method=’pad’, axis=None)
Return type: Updated Data frame
Example: Replace the ‘commissioned’ column contains the values ‘yes’ and ‘no’ with True and False.
Code:
Python3
# import pandas library import pandas as pd # load csv file df = pd.read_csv( "supermarkets.csv" ) # replace the ‘commissioned' column # contains the values 'yes' and 'no' # with True and False: df = df.replace({ 'commissioned' : { 'yes' : True , 'no' : False }}) # show the dataframe df |
Output: