Pandas DataFrame is a two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). Arithmetic operations align on both row and column labels. It can be thought of as a dict-like container for Series objects. This is the primary data structure of the Pandas.
Pandas DataFrame.to_string()
function render a DataFrame to a console-friendly tabular output.
Syntax: DataFrame.to_string(buf=None, columns=None, col_space=None, header=True, index=True, na_rep=’NaN’, formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, max_rows=None, max_cols=None, show_dimensions=False, decimal=’.’, line_width=None)
Parameter :
buf : Buffer to write to.
columns : The subset of columns to write. Writes all columns by default.
col_space : The minimum width of each column.
header : Write out the column names. If a list of strings is given, it is assumed to be aliases for the column names.
index : Whether to print index (row) labels.
na_rep : String representation of NAN to use.
formatters : Formatter functions to apply to columns’ elements by position or name.
float_format : Formatter function to apply to columns’ elements if they are floats. The result of this function must be a unicode string.
sparsify : Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row.
index_names : Prints the names of the indexes.
max_rows : Maximum number of rows to display in the console.
max_cols : Maximum number of columns to display in the console.
show_dimensions : Display DataFrame dimensions (number of rows by number of columns).
decimal : Character recognized as decimal separator, e.g. ‘, ’ in Europe.
line_width : Width to wrap a line in characters.Returns : str (or unicode, depending on data and options)
Example #1: Use DataFrame.to_string()
function to render the given DataFrame to a console-friendly tabular output. Do not include the index labels in the output.
# importing pandas as pd import pandas as pd # Creating the DataFrame df = pd.DataFrame({ 'Weight' :[ 45 , 88 , 56 , 15 , 71 ], 'Name' :[ 'Sam' , 'Andrea' , 'Alex' , 'Robin' , 'Kia' ], 'Age' :[ 14 , 25 , 55 , 8 , 21 ]}) # Create the index index_ = pd.date_range( '2010-10-09 08:45' , periods = 5 , freq = 'H' ) # Set the index df.index = index_ # Print the DataFrame print (df) |
Output :
Now we will use DataFrame.to_string()
function to render the given DataFrame to a console-friendly tabular output.
# print in tabular format result = df.to_string(index = False ) # Print the result print (result) |
Output :
As we can see in the output, the DataFrame.to_string()
function has successfully rendered the given dataframe to the console friendly tabular output.
Example #2: Use DataFrame.to_string()
function to render the given DataFrame to a console-friendly tabular output. Represent the missing value in the given Dataframe by the string ‘Missing’.
# importing pandas as pd import pandas as pd # Creating the DataFrame df = pd.DataFrame({ "A" :[ 12 , 4 , 5 , None , 1 ], "B" :[ 7 , 2 , 54 , 3 , None ], "C" :[ 20 , 16 , 11 , 3 , 8 ], "D" :[ 14 , 3 , None , 2 , 6 ]}) # Create the index index_ = [ 'Row_1' , 'Row_2' , 'Row_3' , 'Row_4' , 'Row_5' ] # Set the index df.index = index_ # Print the DataFrame print (df) |
Output :
Now we will use DataFrame.to_string()
function to render the given DataFrame to a console-friendly tabular output.
# print in tabular format result = df.to_string(na_rep = 'Missing' ) # Print the result print (result) |
Output :
As we can see in the output, the DataFrame.to_string()
function has successfully rendered the given dataframe to the console-friendly tabular output.