Given a Prufer sequence of a Tree, the task is to print the nodes with prime-degree in this tree.
Examples:
Input: arr[] = {4, 1, 3, 4} Output: 1 3 4 Explanation: The tree is: 2----4----3----1----5 | 6 Hence, the degree of 1, 3 and 4 are 2, 2 and 3 respectively which are prime. Input: a[] = {1, 2, 2} Output: 1 2
Approach:
- Since the length of prufer sequence is N – 2 if N is the number of nodes. Therefore, create an array degree[] of size 2 more than the length of the Prufer sequence.
- Initially, fill the degree array with 1.
- Iterate in the Prufer sequence and increase the frequency in the degree table for every element. This method works because the frequency of a node in the Prufer sequence is one less than the degree in the tree.
- Further, to check if the node degree is prime or not, we will use Sieve Of eratosthenes. Create a sieve which will help us to identify if the degree is prime or not in O(1) time.
- If a node has a prime degree, then print the node number.
Below is the implementation of the above approach:
C++
// C++ implementation to print the // nodes with prime degree from the // given prufer sequence #include <bits/stdc++.h> using namespace std; // Function to create Sieve // to check primes void SieveOfEratosthenes( bool prime[], int p_size) { // False here indicates // that it is not prime prime[0] = false ; prime[1] = false ; for ( int p = 2; p * p <= p_size; p++) { // If prime[p] is not changed, // then it is a prime if (prime[p]) { // Update all multiples of p, // set them to non-prime for ( int i = p * 2; i <= p_size; i += p) prime[i] = false ; } } } // Function to print the nodes with // prime degree in the tree // whose Prufer sequence is given void PrimeDegreeNodes( int prufer[], int n) { int nodes = n + 2; bool prime[nodes + 1]; memset (prime, true , sizeof (prime)); SieveOfEratosthenes(prime, nodes + 1); // Hash-table to mark the // degree of every node int degree[n + 2 + 1]; // Initially let all the degrees be 1 for ( int i = 1; i <= nodes; i++) degree[i] = 1; // Increase the count of the degree for ( int i = 0; i < n; i++) degree[prufer[i]]++; // Print the nodes with prime degree for ( int i = 1; i <= nodes; i++) { if (prime[degree[i]]) { cout << i << " " ; } } } // Driver Code int main() { int a[] = { 4, 1, 3, 4 }; int n = sizeof (a) / sizeof (a[0]); PrimeDegreeNodes(a, n); return 0; } |
Java
// Java implementation to print the // nodes with prime degree from the // given prufer sequence import java.util.*; class GFG{ // Function to create Sieve // to check primes static void SieveOfEratosthenes( boolean prime[], int p_size) { // False here indicates // that it is not prime prime[ 0 ] = false ; prime[ 1 ] = false ; for ( int p = 2 ; p * p <= p_size; p++) { // If prime[p] is not changed, // then it is a prime if (prime[p]) { // Update all multiples of p, // set them to non-prime for ( int i = p * 2 ; i <= p_size; i += p) prime[i] = false ; } } } // Function to print the nodes with // prime degree in the tree // whose Prufer sequence is given static void PrimeDegreeNodes( int prufer[], int n) { int nodes = n + 2 ; boolean []prime = new boolean [nodes + 1 ]; Arrays.fill(prime, true ); SieveOfEratosthenes(prime, nodes + 1 ); // Hash-table to mark the // degree of every node int []degree = new int [n + 2 + 1 ]; // Initially let all the degrees be 1 for ( int i = 1 ; i <= nodes; i++) degree[i] = 1 ; // Increase the count of the degree for ( int i = 0 ; i < n; i++) degree[prufer[i]]++; // Print the nodes with prime degree for ( int i = 1 ; i <= nodes; i++) { if (prime[degree[i]]) { System.out.print(i+ " " ); } } } // Driver Code public static void main(String[] args) { int a[] = { 4 , 1 , 3 , 4 }; int n = a.length; PrimeDegreeNodes(a, n); } } // This code contributed by Princi Singh |
Python3
# Python3 implementation to print the # nodes with prime degree from the # given prufer sequence # Function to create Sieve # to check primes def SieveOfEratosthenes(prime, p_size): # False here indicates # that it is not prime prime[ 0 ] = False prime[ 1 ] = False p = 2 while (p * p < = p_size): # If prime[p] is not changed, # then it is a prime if (prime[p]): # Update all multiples of p, # set them to non-prime for i in range (p * 2 , p_size + 1 , p): prime[i] = False p + = 1 # Function to print the nodes with # prime degree in the tree # whose Prufer sequence is given def PrimeDegreeNodes(prufer, n): nodes = n + 2 prime = [ True ] * (nodes + 1 ) SieveOfEratosthenes(prime, nodes + 1 ) # Hash-table to mark the # degree of every node degree = [ 0 ] * (n + 2 + 1 ); # Initially let all the degrees be 1 for i in range ( 1 , nodes + 1 ): degree[i] = 1 ; # Increase the count of the degree for i in range ( 0 , n): degree[prufer[i]] + = 1 # Print the nodes with prime degree for i in range ( 1 , nodes + 1 ): if prime[degree[i]]: print (i, end = ' ' ) # Driver Code if __name__ = = '__main__' : a = [ 4 , 1 , 3 , 4 ] n = len (a) PrimeDegreeNodes(a, n) # This code is contributed by rutvik_56 |
C#
// C# implementation to print the // nodes with prime degree from the // given prufer sequence using System; class GFG{ // Function to create Sieve // to check primes static void SieveOfEratosthenes( bool []prime, int p_size) { // False here indicates // that it is not prime prime[0] = false ; prime[1] = false ; for ( int p = 2; p * p <= p_size; p++) { // If prime[p] is not changed, // then it is a prime if (prime[p]) { // Update all multiples of p, // set them to non-prime for ( int i = p * 2; i <= p_size; i += p) prime[i] = false ; } } } // Function to print the nodes with // prime degree in the tree // whose Prufer sequence is given static void PrimeDegreeNodes( int []prufer, int n) { int nodes = n + 2; bool []prime = new bool [nodes + 1]; for ( int i = 0; i < prime.Length; i++) prime[i] = true ; SieveOfEratosthenes(prime, nodes + 1); // Hash-table to mark the // degree of every node int []degree = new int [n + 2 + 1]; // Initially let all the degrees be 1 for ( int i = 1; i <= nodes; i++) degree[i] = 1; // Increase the count of the degree for ( int i = 0; i < n; i++) degree[prufer[i]]++; // Print the nodes with prime degree for ( int i = 1; i <= nodes; i++) { if (prime[degree[i]]) { Console.Write(i + " " ); } } } // Driver Code public static void Main(String[] args) { int []a = { 4, 1, 3, 4 }; int n = a.Length; PrimeDegreeNodes(a, n); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // JavaScript implementation to print the // nodes with prime degree from the // given prufer sequence // Function to create Sieve // to check primes function SieveOfEratosthenes(prime, p_size) { // False here indicates // that it is not prime prime[0] = false ; prime[1] = false ; for (let p = 2; p * p <= p_size; p++) { // If prime[p] is not changed, // then it is a prime if (prime[p]) { // Update all multiples of p, // set them to non-prime for (let i = p * 2; i <= p_size; i += p) prime[i] = false ; } } } // Function to print the nodes with // prime degree in the tree // whose Prufer sequence is given function PrimeDegreeNodes(prufer, n) { let nodes = n + 2; let prime = new Array(nodes + 1); prime.fill( true ); SieveOfEratosthenes(prime, nodes + 1); // Hash-table to mark the // degree of every node let degree = new Array(n + 2 + 1); // Initially let all the degrees be 1 for (let i = 1; i <= nodes; i++) degree[i] = 1; // Increase the count of the degree for (let i = 0; i < n; i++) degree[prufer[i]]++; // Print the nodes with prime degree for (let i = 1; i <= nodes; i++) { if (prime[degree[i]]) { document.write(i + " " ); } } } // Driver Code let a = [ 4, 1, 3, 4 ]; let n = a.length PrimeDegreeNodes(a, n); // This code is contributed by gfgking </script> |
1 3 4
Time Complexity: O(n*log(log(n))) + O(n) which is asymptotically equal to O(n*log(log(n))).
Space Complexity: O(n) as arrays has been created to store values.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!