Let us see how to remove special characters like #, @, &, etc. from column names in the pandas data frame. Here we will use replace function for removing special character.
Example 1: remove a special character from column names
Python
# import pandas import pandas as pd # create data frame Data = { 'Name#' : [ 'Mukul' , 'Rohan' , 'Mayank' , 'Shubham' , 'Aakash' ], 'Location' : [ 'Saharanpur' , 'Meerut' , 'Agra' , 'Saharanpur' , 'Meerut' ], 'Pay' : [ 25000 , 30000 , 35000 , 40000 , 45000 ]} df = pd.DataFrame(Data) # print original data frame print (df) # remove special character df.columns = df.columns. str .replace( '[#,@,&]' , '') # print file after removing special character print ( "\n\n" , df) |
Output:
Here, we have successfully remove a special character from the column names. Now we will use a list with replace function for removing multiple special characters from our column names.
Example 2: remove multiple special characters from the pandas data frame
Python
# import pandas import pandas as pd # create data frame Data = { 'Name#' : [ 'Mukul' , 'Rohan' , 'Mayank' , 'Shubham' , 'Aakash' ], 'Location@' : [ 'Saharanpur' , 'Meerut' , 'Agra' , 'Saharanpur' , 'Meerut' ], 'Pay&' : [ 25000 , 30000 , 35000 , 40000 , 45000 ]} df = pd.DataFrame(Data) # print original data frame print (df) # remove special character df.columns = df.columns. str .replace( '[#,@,&]' ,'') # print file after removing special character print ( "\n\n" , df) |
Output: