Saturday, November 23, 2024
Google search engine
HomeData Modelling & AIMinimum kilograms of Apples distribution

Minimum kilograms of Apples distribution

One day Jay, on getting his first salary, decides to distribute apples among the poverty-stricken persons. He gave each person 1kg of apples. People are coming in a queue and he makes sure that he gives every person 1 kg of apples only once. Every person is identified by a specific integer.

Given the length of the queue N followed by an array of N integers, denoting the persons in that queue, find the minimum kilograms of apples Jay will have to distribute.

Examples:

Input: arr[] = {1, 1, 1, 1, 1}
Output: 1
Explanation: For test case 1, the same person (identified by the integer ‘1’ comes again and again in the queue, but Jay will not give him apples again and again. He gave him apples only once so minimum kg’s of apples here required-1kg).

Input: arr[] = {1, 2, 3, 1, 2}
Output: 3

Method 1: To solve the problem follow the below idea:

Iterate over the array and check if there is any duplicate value present. If no duplicates are found then simply increment count. Return count.

Below is the implementation of the above approach:

C++




// C++ code for the above approach:
#include <bits/stdc++.h>
using namespace std;
 
int minimum_apple(int arr[], int n)
{
    sort(arr, arr + n);
    int c = 1;
    for (int i = 1; i < n; i++) {
        if (arr[i - 1] != arr[i]) {
            c++;
        }
    }
    return c;
}
 
// Drivers code
int main()
{
    int arr[] = { 1, 1, 1, 1, 1 };
    int n = 5;
 
    // Function Call
    cout << minimum_apple(arr, n) << endl;
    return 0;
}


C




#include <stdio.h>
#include <stdlib.h>
 
int compare(const void *a, const void *b) {
    return (*(int*)a - *(int*)b);
}
 
int minimum_apple(int arr[], int n) {
    qsort(arr, n, sizeof(int), compare);
    int c = 1;
    for (int i = 1; i < n; i++) {
        if (arr[i - 1] != arr[i]) {
            c++;
        }
    }
    return c;
}
 
int main() {
    int arr[] = {1, 1, 1, 1, 1};
    int n = 5;
    printf("%d\n", minimum_apple(arr, n));
    return 0;
}


Java




import java.io.*;
import java.util.*;
 
class GFG {
    public static void main (String[] args) {
     int arr[] = {1, 1, 1, 1, 1};
      int n=5;
 
        System.out.println(minimum_apple(arr,n));
    }
  public static int minimum_apple (int arr[], int n) {
        Arrays.sort(arr);
        int c=1;
        for(int i=1;i<n;i++)
        {
            if(arr[i-1]!=arr[i])
            {
                c++;
            }
        }
        return c;
    }
}


Python3




import numpy as np
 
def minimum_apple(arr, n):
    arr.sort()
    c = 1
    for i in range(1, n):
        if arr[i-1] != arr[i]:
            c += 1
    return c
 
arr = np.array([1, 1, 1, 1, 1])
n = 5
print(minimum_apple(arr, n))


C#




// C# implementation
 
using System;
 
class GFG {
    static void Main(string[] args)
    {
        int[] arr = { 1, 1, 1, 1, 1 };
        int n = 5;
 
        Console.WriteLine(minimum_apple(arr, n));
    }
    public static int minimum_apple(int[] arr, int n)
    {
        Array.Sort(arr);
        int c = 1;
        for (int i = 1; i < n; i++) {
            if (arr[i - 1] != arr[i]) {
                c++;
            }
        }
        return c;
    }
}
 
// This code is contributed by Tapesh(tapeshdua420)


Javascript




function minimum_apple(arr, n) {
    arr.sort();
    let c = 1;
    for (let i = 1; i < n; i++) {
        if (arr[i - 1] !== arr[i]) {
            c++;
        }
    }
    return c;
}
 
const arr = [1, 1, 1, 1, 1];
const n = 5;
console.log(minimum_apple(arr, n));


Output

1















Time Complexity: O(n*logn), because of sorting.
Auxiliary Space: O(1)

Method 2: To solve the problem follow the below idea:

As we can see answer will be the number of different persons in the array because every person will get atmost 1 kg apples.

  • We can find out different persons by using hash map also .

Below is the implementation of the above approach:

C++




// C++ code for the above approach:
#include <bits/stdc++.h>;
using namespace std;
 
int minimum_apple(int arr[], int n)
{
      // Using hashmap to find unique person
    unordered_map<int,int> mp;
      for(int i=0;i<n;i++){
        mp[arr[i]] = 1;
    }
      return mp.size();
}
 
// Drivers code
int main()
{
    int arr[] = { 1, 1, 1, 2, 1 };
    int n = 5;
 
    // Function Call
    cout <<minimum_apple(arr, n) << endl;
    return 0;
}


Java




import java.util.HashMap;
 
public class GFG {
 
    // Function to find the minimum number of apples
    static int minimum_apple(int[] arr, int n) {
        // Create a HashMap to store the occurrences of elements in the array
        HashMap<Integer, Integer> mp = new HashMap<>();
 
        // Count the occurrences of each element in the array
        for (int i = 0; i < n; i++) {
            mp.put(arr[i], 1);
        }
 
        // Return the size of the HashMap, which represents the number of distinct apples
        return mp.size();
    }
 
    // Drivers code
    public static void main(String[] args) {
        int[] arr = {1, 1, 1, 2, 1};
        int n = 5;
 
        // Function Call
        System.out.println(minimum_apple(arr, n));
    }
}


Python




def minimum_apple(arr, n):
    # Using a dictionary to find unique person
    mp = {}
    for i in range(n):
        mp[arr[i]] = 1
    return len(mp)
 
 
# Driver code
if __name__ == "__main__":
    arr = [1, 1, 1, 2, 1]
    n = 5
 
    # Function Call
    print(minimum_apple(arr, n))


C#




using System;
using System.Collections.Generic;
 
class Program
    // Function to find the minimum number of apples
    static int MinimumApple(int[] arr, int n)
    {
        Dictionary<int, int> mp = new Dictionary<int, int>();
       
        // Count the occurrences of each element in the array
        for (int i = 0; i < n; i++)
        {
            mp[arr[i]] = 1;
        }
        return mp.Count;
    }
 
    static void Main(string[] args)
    {
        int[] arr = { 1, 1, 1, 2, 1 };
        int n = 5;
        // Function Call
        Console.WriteLine(MinimumApple(arr, n));
    }
}


Javascript




function minimum_apple(arr, n) {
    // Using map to find unique person
    let mp = new Map();
    for (let i = 0; i < n; i++) {
        mp.set(arr[i], 1);
    }
    return mp.size;
}
// Drivers code
let arr = [1, 1, 1, 2, 1];
let n = 5;
// Function Call
console.log(minimum_apple(arr, n));


Output

2








Time Complexity: O(N)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
18 Oct, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments