Tuesday, November 19, 2024
Google search engine
HomeData Modelling & AIMinimum array elements to be changed to make Recaman’s sequence

Minimum array elements to be changed to make Recaman’s sequence

Given an array arr[] of N elements. The task is to find the minimum number of elements to be changed in the array such that the array contains first N Recaman’s Sequence terms. Note that Recaman terms may be present in any order in the array. 
First few terms of Recaman’s Sequence are: 
 

0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, …..

Examples: 
 

Input: arr[] = {44, 0, 2, 3, 9} 
Output:
N = 5 and first 5 Recaman Numbers are 0, 1, 3, 6 and 2 
44 and 9 must be replaced with 6 and 1 
Hence 2 changes are required.
Input: arr[] = {0, 33, 3, 1} 
Output:
 

 

Approach: 
 

  • Insert first N Recaman’s Sequence terms in a set.
  • Traverse the array from left to right and check if array element is present in the set.
  • If current element is present in the set that remove it from the set.
  • Minimum changes required is the size of the final reduced set.

Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
int recamanGenerator(int arr[], int n)
{
    // First term of the sequence is always 0
    arr[0] = 0;
 
    // Fill remaining terms using recursive
    // formula
    for (int i = 1; i <= n; i++) {
        int temp = arr[i - 1] - i;
        int j;
 
        for (j = 0; j < i; j++) {
 
            // If arr[i-1] - i is negative or
            // already exists
            if ((arr[j] == temp) || temp < 0) {
                temp = arr[i - 1] + i;
                break;
            }
        }
 
        arr[i] = temp;
    }
}
 
// Function that returns minimum changes required
int recamanArray(int arr[], int n)
{
 
    // Set to store first n Recaman numbers
    unordered_set<int> s;
 
    // Generate and store
    // first n Recaman numbers
    int recaman[n];
    recamanGenerator(recaman, n);
 
    // Insert first n Recaman numbers to set
    for (int i = 0; i < n; i++)
        s.insert(recaman[i]);
 
    for (int i = 0; i < n; i++) {
 
        // If current element of the array
        // is present in the set
        auto it = s.find(arr[i]);
        if (it != s.end())
            s.erase(it);
    }
 
    // Return the remaining number of
    // elements in the set
    return s.size();
}
 
// Driver code
int main()
{
 
    int arr[] = { 7, 11, 20, 4, 2, 1, 8, 6 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << recamanArray(arr, n);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
 
static int recamanGenerator(int arr[], int n)
{
    // First term of the sequence is always 0
    arr[0] = 0;
 
    // Fill remaining terms using recursive
    // formula
    for (int i = 1; i <= n; i++)
    {
        int temp = arr[i - 1] - i;
        int j;
 
        for (j = 0; j < i; j++)
        {
 
            // If arr[i-1] - i is negative or
            // already exists
            if ((arr[j] == temp) || temp < 0)
            {
                temp = arr[i - 1] + i;
                break;
            }
        }
 
        arr[i] = temp;
    }
    return 0;
}
 
// Function that returns minimum changes required
static int recamanArray(int arr[], int n)
{
     
 
    // Set to store first n Recaman numbers
    Set<Integer> s=new HashSet<Integer>();
 
    // Generate and store
    // first n Recaman numbers
    int recaman[]=new int[n+1];
    recamanGenerator(recaman, n);
 
    // Insert first n Recaman numbers to set
    for (int i = 0; i < n; i++)
        s.add(recaman[i]);
 
    for (int i = 0; i < n; i++)
    {
        // If current element of the array
        // is present in the set
        if (s.contains(arr[i]))
            s.remove(arr[i]);
    }
 
    // Return the remaining number of
    // elements in the set
    return s.size();
}
 
// Driver code
public static void main(String args[])
{
 
    int arr[] = { 7, 11, 20, 4, 2, 1, 8, 6 };
    int n = arr.length;
 
    System.out.print( recamanArray(arr, n));
}
}
 
// This code is contributed by Arnab Kundu


Python3




# Python3 implementation of the approach
def recamanGenerator(arr, n):
     
    # First term of the sequence
    # is always 0
    arr[0] = 0
 
    # Fill remaining terms using
    # recursive formula
    for i in range(1, n):
        temp = arr[i - 1] - i
        j = 0
 
        for j in range(i):
 
            # If arr[i-1] - i is negative or
            # already exists
            if ((arr[j] == temp) or temp < 0):
                temp = arr[i - 1] + i
                break
 
        arr[i] = temp
 
# Function that returns minimum
# changes required
def recamanArray(arr, n):
 
    # Set to store first n Recaman numbers
    s = dict()
 
    # Generate and store
    # first n Recaman numbers
    recaman = [0 for i in range(n)]
    recamanGenerator(recaman, n)
 
    # Insert first n Recaman numbers to set
    for i in range(n):
        s[recaman[i]] = s.get(recaman[i], 0) + 1
 
    for i in range(n):
 
        # If current element of the array
        # is present in the set
        if arr[i] in s.keys():
            del s[arr[i]]
 
    # Return the remaining number of
    # elements in the set
    return len(s)
 
# Driver code
arr = [7, 11, 20, 4, 2, 1, 8, 6 ]
n = len(arr)
 
print(recamanArray(arr, n))
 
# This code is contributed
# by mohit kumar


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG
{
 
static int recamanGenerator(int []arr, int n)
{
    // First term of the sequence is always 0
    arr[0] = 0;
 
    // Fill remaining terms using recursive
    // formula
    for (int i = 1; i <= n; i++)
    {
        int temp = arr[i - 1] - i;
        int j;
 
        for (j = 0; j < i; j++)
        {
 
            // If arr[i-1] - i is negative or
            // already exists
            if ((arr[j] == temp) || temp < 0)
            {
                temp = arr[i - 1] + i;
                break;
            }
        }
 
        arr[i] = temp;
    }
    return 0;
}
 
// Function that returns minimum changes required
static int recamanArray(int []arr, int n)
{
     
    // Set to store first n Recaman numbers
    HashSet<int> s=new HashSet<int>();
 
    // Generate and store
    // first n Recaman numbers
    int[] recaman=new int[n+1];
    recamanGenerator(recaman, n);
 
    // Insert first n Recaman numbers to set
    for (int i = 0; i < n; i++)
        s.Add(recaman[i]);
 
    for (int i = 0; i < n; i++)
    {
        // If current element of the array
        // is present in the set
        if (s.Contains(arr[i]))
            s.Remove(arr[i]);
    }
 
    // Return the remaining number of
    // elements in the set
    return s.Count;
}
 
// Driver code
static void Main()
{
 
    int []arr = { 7, 11, 20, 4, 2, 1, 8, 6 };
    int n = arr.Length;
 
    Console.Write( recamanArray(arr, n));
}
}
 
// This code is contributed by mits


Javascript




<script>
 
// Javascript implementation of the approach
 
function recamanGenerator(arr, n)
{
    // First term of the sequence is always 0
    arr[0] = 0;
 
    // Fill remaining terms using recursive
    // formula
    for (var i = 1; i <= n; i++) {
        var temp = arr[i - 1] - i;
        var j;
 
        for (j = 0; j < i; j++) {
 
            // If arr[i-1] - i is negative or
            // already exists
            if ((arr[j] == temp) || temp < 0) {
                temp = arr[i - 1] + i;
                break;
            }
        }
 
        arr[i] = temp;
    }
}
 
// Function that returns minimum changes required
function recamanArray(arr, n)
{
 
    // Set to store first n Recaman numbers
    var s = [];
 
    // Generate and store
    // first n Recaman numbers
    var recaman = Array(n).fill(0);
    recamanGenerator(recaman, n);
 
    // push first n Recaman numbers to set
    for (var i = 0; i < n; i++)
        s.push(recaman[i]);
 
    s.sort((a,b)=> b-a)
 
    for (var i = 0; i < n; i++) {
 
        // If current element of the array
        // is present in the set
        if(s.includes(arr[i]))
        {
            s.splice(s.indexOf(arr[i]), 1);
        }  
    }
 
    // Return the remaining number of
    // elements in the set
    return s.length;
}
 
// Driver code
var arr = [7, 11, 20, 4, 2, 1, 8, 6 ];
var n = arr.length;
document.write( recamanArray(arr, n));
 
 
</script>


Output: 

3

 

Time Complexity: O(n*n)

Auxiliary Space: O(n), The space complexity of the recamanGenerator function is O(n) because it creates an array of size n to store the Recaman sequence. The space complexity of the recamanArray function is O(n) because it creates an unordered set of size n to store the first n Recaman numbers. Hence, the overall space complexity of the function is O(n).

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
23 Apr, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments