Wednesday, November 20, 2024
Google search engine
HomeData Modelling & AIMaximize value of Binary String in K steps by performing XOR of...

Maximize value of Binary String in K steps by performing XOR of Substrings

Given a binary string S of size N, the task is to find the maximum possible value in exactly K step, where in each step, perform XOR of two substrings of S (possibly intersecting, possibly the same, possibly non-intersecting).

Examples:

Input: string S =”1010010″, K = 2
Output: “1111110”
Explanation:
In the first step, choose one substring as 1010010 and another as 101001, the XOR of these both strings will be 1111011.
In the second step, Choose one substring as 1111011 and another as 101, the XOR of these both strings will be 1111110, which is the maximum possible value you can get in K steps.

Input: string S =”11010″, K = 1
Output: “11111”
Explanation: Choose one substring as 11010 and another substring as 101, the XOR of these both strings will be 11111, which is the maximum possible value you can get in one step.

Approach: The given problem can be solved by using the below idea.

Choose one substring as String S because it has maximum possible decimal value and other as the size – index of leftmost 0 because we have to maximise the size of substring and convert 0 to 1  and do this step K times.

Follow the steps to solve this problem:

  • Count the number of 1s and 0s in the string.
  • If the count of 1s is equal to the length of the string, then there can be two cases
    • If K is a multiple of 2, i.e., even we can pick a substring ‘1’ and XOR it even times, so the string will remain unchanged.
    • Otherwise, we will pick a substring ‘1’ and XOR it, so only the least significant bit will be changed to ‘0’.
  • If the count of 0s is equal to the length of the string, return 0 as no 1 is there.
  • Take one substring as S and another (say t) is any possible substring of size size N-idx where idx is the index of the leftmost 0.
  • Take XOR of S and t, this is the maximum possible value.

Below is the implementation of the above approach.

C++




// C++ code to implement the approach
#include <bits/stdc++.h>
#define ll long long
using namespace std;
 
// Function to insert n 0s in the
// beginning of the given string
void addZeros(string& str, int n)
{
    for (int i = 0; i < n; i++) {
        str = "0" + str;
    }
}
 
// Function to return the XOR
// of the given strings
string getXOR(string a, string b)
{
 
    // Lengths of the given strings
    int aLen = a.length();
    int bLen = b.length();
 
    // Make both the strings of equal lengths
    // by inserting 0s in the beginning
    if (aLen > bLen) {
        addZeros(b, aLen - bLen);
    }
    else if (bLen > aLen) {
        addZeros(a, bLen - aLen);
    }
 
    // Updated length
    int len = max(aLen, bLen);
 
    // To store the resultant XOR
    string res = "";
    for (int i = 0; i < len; i++) {
        if (a[i] == b[i])
            res += "0";
        else
            res += "1";
    }
 
    return res;
}
 
// Function to find max Xor of one string
string maxValue(string S)
{
 
    // Initialize variables
    ll n = S.size();
 
    // Flag to get index of leftmost
    // zero
    bool f = 1;
 
    ll Idx, Count0 = 0, Count1 = 0;
 
    // Count the number of 1's and 0's in
    // the string and also index of left
    // most 0 in the string
 
    for (ll i = 0; i < n; i++) {
 
        // Character is equal to 1
        if (S[i] == '1') {
 
            Count1++;
        }
        // Character is equal to 0
        else {
 
            if (f) {
                // Storing the index of
                // leftmost zero
                Idx = i;
 
                f = 0;
            }
            Count0++;
        }
    }
 
    // If all are 1's in the string
    if (Count1 == n) {
        return getXOR(S, "1");
    }
 
    // If all are 0's in the string
    // print 0
    if (Count0 == n) {
        return "0";
    }
 
    // Find another substring
    string t = S.substr(Idx, n - Idx);
 
    // Find it's size
    ll size = t.size();
 
    string dec = t;
 
    string Max = "";
 
    // First and second substring
    string t1 = "", t2 = "";
 
    // Find second substring
    for (ll j = 0; j < n; j++) {
        if (j < size) {
            t1 += S[j];
        }
        else {
 
            string dec1 = t1;
 
            // Function to calculate XOR of
            // two string
            string res = getXOR(dec, dec1);
 
            if (res > Max) {
                Max = res;
                t2 = t1;
            }
 
            t1 = t1.substr(1);
            t1 += S[j];
        }
    }
 
    string dec1 = t1;
 
    string res = getXOR(dec1, dec);
    if (res > Max) {
        Max = res;
        t2 = t;
    }
 
    // First and second string
    string d1 = S;
    string d2 = t2;
 
    // Xor of first and second substring
    string ans = getXOR(d1, d2);
 
    Idx = -1;
 
    // Remove leading zeroes
    for (ll i = 0; i < ans.size(); i++) {
        if (ans[i] != '0') {
            Idx = i;
            break;
        }
    }
 
    if (Idx == -1) {
        return "0";
    }
 
    // Return resultant substring
    return ans.substr(Idx);
}
 
// Function to calculate maximum XOR value
// in exactly K steps
string solve(string s, int K)
{
 
    int i = 0;
 
    while (i < K) {
 
        // Function call to find maximum
        // XOR value of s
        s = maxValue(s);
 
        i++;
    }
 
    return s;
}
 
// Driver Code
int main()
{
 
    string s = "1010010";
    int K = 2;
 
    // Function call
    cout << solve(s, K) << endl;
 
    return 0;
}


Java




// Java code to implement the approach
 
import java.io.*;
 
class GFG {
 
    // Function to return the XOR
    // of the given strings
    static String getXOR(String a, String b)
    {
        // Lengths of the given strings
        int aLen = a.length();
        int bLen = b.length();
 
        // Make both the strings of equal lengths
        // by inserting 0s in the beginning
        if (aLen > bLen) {
            b = addZeros(b, aLen - bLen);
        }
        else if (bLen > aLen) {
            a = addZeros(a, bLen - aLen);
        }
 
        // Updated length
        int len = Math.max(aLen, bLen);
 
        // To store the resultant XOR
        String res = "";
        for (int i = 0; i < len; i++) {
            if (a.charAt(i) == b.charAt(i))
                res += "0";
            else
                res += "1";
        }
 
        return res;
    }
 
    // Function to insert n 0s in the
    // beginning of the given string
    static String addZeros(String s, int numZeros)
    {
        for (int i = 0; i < numZeros; i++) {
            s = "0" + s;
        }
        return s;
    }
 
    // Function to find max Xor of one string
    static String maxValue(String S)
    {
        // Initialize variables
        int n = S.length();
 
        // Flag to get index of leftmost
        // zero
        boolean f = true;
        int Idx = 0, Count0 = 0, Count1 = 0;
 
        // Count the number of 1's and 0's in
        // the string and also index of left
        // most 0 in the string
 
        for (int i = 0; i < n; i++) {
            // Character is equal to 1
            if (S.charAt(i) == '1') {
                Count1++;
            }
            // Character is equal to 0
            else {
                if (f) {
                    // Storing the index of
                    // leftmost zero
                    Idx = i;
                    f = false;
                }
                Count0++;
            }
        }
 
        // If all are 1's in the string
        if (Count1 == n) {
            return getXOR(S, "1");
        }
 
        // If all are 0's in the string
        // print 0
        if (Count0 == n) {
            return "0";
        }
        // Find another substring
        String t = S.substring(Idx, n);
 
        // Find it's size
        int size = t.length();
 
        String dec = t;
 
        String Max = "";
 
        // First and second substring
        String t1 = "", t2 = "";
 
        // Find second substring
        for (int j = 0; j < n; j++) {
            if (j < size) {
                t1 += S.charAt(j);
            }
            else {
                String dec1 = t1;
 
                // Function to calculate XOR of
                // two string
                String res = getXOR(dec, dec1);
                if (res.compareTo(Max) > 0) {
                    Max = res;
                    t2 = t1;
                }
                t1 = t1.substring(1);
                t1 += S.charAt(j);
            }
        }
        String dec1 = t1;
        String res = getXOR(dec1, dec);
        if (res.compareTo(Max) > 0) {
            Max = res;
            t2 = t;
        }
        // First and second string
        String d1 = S;
        String d2 = t2;
 
        // Xor of first and second substring
        String ans = getXOR(d1, d2);
        Idx = -1;
 
        // Remove leading zeroes
        for (int i = 0; i < ans.length(); i++) {
            if (ans.charAt(i) != '0') {
                Idx = i;
                break;
            }
        }
        if (Idx == -1) {
            return "0";
        }
        // Return resultant substring
        return ans.substring(Idx);
    }
 
    // Function to calculate maximum XOR value
    // in exactly K steps
    static String solve(String s, int K)
    {
        int i = 0;
        while (i < K) {
            // Function call to find maximum XOR value of s
            s = maxValue(s);
            i++;
        }
        return s;
    }
 
    public static void main(String[] args)
    {
        String s = "1010010";
        int K = 2;
 
        // Function call
        System.out.println(solve(s, K));
    }
}
 
// This code is contributed by lokesh.


Python3




# python code
def add_zeros(s: str, n: int) -> str:
    return "0" * n + s
 
def get_xor(a: str, b: str) -> str:
    a_len = len(a)
    b_len = len(b)
 
    if a_len > b_len:
        b = add_zeros(b, a_len - b_len)
    elif b_len > a_len:
        a = add_zeros(a, b_len - a_len)
    len_ = max(a_len, b_len)
 
    res = ""
    for i in range(len_):
        if a[i] == b[i]:
            res += "0"
        else:
            res += "1"
 
    return res
 
 
def maxValue(S: str) -> str:
    n = len(S)
    f = True
    Idx = 0
    Count0 = 0
    Count1 = 0
 
    for i in range(n):
        if S[i] == "1":
            Count1 += 1
        else:
            if f:
                Idx = i
                f = False
            Count0 += 1
 
    if Count1 == n:
        return get_xor(S, "1")
 
    if Count0 == n:
        return "0"
 
    t = S[Idx:]
    size = len(t)
    dec = t
    Max = ""
    t1 = ""
    t2 = ""
 
    for j in range(n):
        if j < size:
            t1 += S[j]
        else:
            dec1 = t1
            res = get_xor(dec, dec1)
            if res > Max:
                Max = res
                t2 = t1
            t1 = t1[1:]
            t1 += S[j]
 
    dec1 = t1
    res = get_xor(dec1, dec)
    if res > Max:
        Max = res
        t2 = t
 
    d1 = S
    d2 = t2
    ans = get_xor(d1, d2)
    Idx = -1
 
    for i in range(len(ans)):
        if ans[i] != "0":
            Idx = i
            break
 
    if Idx == -1:
        return "0"
    return ans[Idx:]
 
def solve(s, K):
    i = 0
    while (i < K):
        s = maxValue(s)
        i += 1
    return s
 
s = "1010010"
K = 2
print(solve(s, K))
 
# This code is contributed by ksam24000


C#




// C# code to implement the approach
using System;
 
public class GFG {
 
  // Function to return the XOR
  // of the given strings
  static string getXOR(string a, string b)
  {
    // Lengths of the given strings
    int aLen = a.Length;
    int bLen = b.Length;
 
    // Make both the strings of equal lengths
    // by inserting 0s in the beginning
    if (aLen > bLen) {
      b = AddZeros(b, aLen - bLen);
    }
    else if (bLen > aLen) {
      a = AddZeros(a, bLen - aLen);
    }
 
    // Updated length
    int len = Math.Max(aLen, bLen);
 
    // To store the resultant XOR
    string res = "";
    for (int i = 0; i < len; i++) {
      if (a[i] == b[i])
        res += "0";
      else
        res += "1";
    }
 
    return res;
  }
 
  // Function to insert n 0s in the
  // beginning of the given string
  static string AddZeros(string s, int numZeros)
  {
    for (int i = 0; i < numZeros; i++) {
      s = "0" + s;
    }
    return s;
  }
 
  // Function to find max Xor of one string
  static string maxValue(string S)
  {
    // Initialize variables
    int n = S.Length;
 
    // Flag to get index of leftmost
    // zero
    bool f = true;
    int Idx = 0, Count0 = 0, Count1 = 0;
 
    // Count the number of 1's and 0's in
    // the string and also index of left
    // most 0 in the string
 
    for (int i = 0; i < n; i++) {
      // Character is equal to 1
      if (S[i] == '1') {
        Count1++;
      }
      // Character is equal to 0
      else {
        if (f) {
          // Storing the index of
          // leftmost zero
          Idx = i;
          f = false;
        }
        Count0++;
      }
    }
 
    // If all are 1's in the string
    if (Count1 == n) {
      return getXOR(S, "1");
    }
 
    // If all are 0's in the string
    // print 0
    if (Count0 == n) {
      return "0";
    }
    // Find another substring
    string t = S.Substring((int)Idx, (int)(n - Idx));
 
    // Find it's size
    int size = t.Length;
 
    string dec = t;
 
    string Max = "";
 
    // First and second substring
    string t1 = "", t2 = "";
 
    // Find second substring
    for (int j = 0; j < n; j++) {
      if (j < size) {
        t1 += S[j];
      }
      else {
        string dec1 = t1;
 
        // Function to calculate XOR of
        // two string
        string res = getXOR(dec, dec1);
        if (res.CompareTo(Max) > 0) {
          Max = res;
          t2 = t1;
        }
        t1 = t1.Substring(1);
        t1 += S[j];
      }
    }
    string temp1 = t1;
    string temp2 = getXOR(temp1, dec);
    if (temp2.CompareTo(Max) > 0) {
      Max = temp2;
      t2 = t;
    }
    // First and second string
    string d1 = S;
    string d2 = t2;
 
    // Xor of first and second substring
    string ans = getXOR(d1, d2);
    Idx = -1;
 
    // Remove leading zeroes
    for (int i = 0; i < ans.Length; i++) {
      if (ans[i] != '0') {
        Idx = i;
        break;
      }
    }
    if (Idx == -1) {
      return "0";
    }
    // Return resultant substring
    return ans.Substring(Idx);
  }
 
  // Function to calculate maximum XOR value
  // in exactly K steps
  static string solve(string s, int K)
  {
    int i = 0;
    while (i < K) {
      // Function call to find maximum XOR value of s
      s = maxValue(s);
      i++;
    }
    return s;
  }
 
  static public void Main()
  {
 
    // Code
    string s = "1010010";
    int K = 2;
 
    // Function call
    Console.WriteLine(solve(s, K));
  }
}
 
// This code is contributed by lokeshmvs21.


Javascript




// JavaScript code to implement the approach
 
// Function to insert n 0s in the
// beginning of the given string
const addZeros = (str, n) => {
    for (let i = 0; i < n; i++) {
        str = "0" + str;
    }
    return str;
}
 
// Function to return the XOR
// of the given strings
const getXOR = (a, b) => {
 
    // Lengths of the given strings
    let aLen = a.length;
    let bLen = b.length;
 
    // Make both the strings of equal lengths
    // by inserting 0s in the beginning
    if (aLen > bLen) {
        b = addZeros(b, aLen - bLen);
    }
    else if (bLen > aLen) {
        a = addZeros(a, bLen - aLen);
    }
 
    // Updated length
    let len = Math.max(aLen, bLen);
 
    // To store the resultant XOR
    let res = "";
    for (let i = 0; i < len; i++) {
        if (a[i] == b[i])
            res += "0";
        else
            res += "1";
    }
 
    return res;
}
 
// Function to find max Xor of one string
const maxValue = (S) => {
 
    // Initialize variables
    let n = S.length;
 
    // Flag to get index of leftmost
    // zero
    let f = 1;
 
    let Idx, Count0 = 0, Count1 = 0;
 
    // Count the number of 1's and 0's in
    // the string and also index of left
    // most 0 in the string
 
    for (let i = 0; i < n; i++) {
 
        // Character is equal to 1
        if (S[i] == '1') {
 
            Count1++;
        }
        // Character is equal to 0
        else {
 
            if (f) {
                // Storing the index of
                // leftmost zero
                Idx = i;
 
                f = 0;
            }
            Count0++;
        }
    }
 
    // If all are 1's in the string
    if (Count1 == n) {
        return getXOR(S, "1");
    }
 
    // If all are 0's in the string
    // print 0
    if (Count0 == n) {
        return "0";
    }
 
    // Find another substring
    let t = S.substring(Idx, n);
 
    // Find it's size
    let size = t.length;
 
    let dec = t;
 
    let Max = "";
 
    // First and second substring
    let t1 = "", t2 = "";
 
    // Find second substring
    for (let j = 0; j < n; j++) {
        if (j < size) {
            t1 += S[j];
        }
        else {
 
            let dec1 = t1;
 
            // Function to calculate XOR of
            // two string
            let res = getXOR(dec, dec1);
 
            if (res > Max) {
                Max = res;
                t2 = t1;
            }
 
            t1 = t1.substring(1);
            t1 += S[j];
        }
    }
 
    let dec1 = t1;
 
    let res = getXOR(dec1, dec);
    if (res > Max) {
        Max = res;
        t2 = t;
    }
 
    // First and second string
    let d1 = S;
    let d2 = t2;
 
    // Xor of first and second substring
    let ans = getXOR(d1, d2);
 
    Idx = -1;
 
    // Remove leading zeroes
    for (let i = 0; i < ans.length; i++) {
        if (ans[i] != '0') {
            Idx = i;
            break;
        }
    }
 
    if (Idx == -1) {
        return "0";
    }
 
    // Return resultant substring
    return ans.substring(Idx);
}
 
// Function to calculate maximum XOR value
// in exactly K steps
const solve = (s, K) => {
 
    let i = 0;
 
    while (i < K) {
 
        // Function call to find maximum
        // XOR value of s
        s = maxValue(s);
 
        i++;
    }
 
    return s;
}
 
// Driver Code
 
 
let s = "1010010";
let K = 2;
 
// Function call
console.log(solve(s, K));
 
// This code is contributed by rakeshsahni   


Output

1111110

Time Complexity: O(N2 * K)
Auxiliary Space: O(N)

Related Articles:

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
27 Apr, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments