Wednesday, November 20, 2024
Google search engine
HomeData Modelling & AIMaximize the sum by choosing a Subsequence

Maximize the sum by choosing a Subsequence

Given an array X[] of length N along with an integer K. Then the task is to choose a sub-sequence to maximize the sum by selecting the starting index i 
(1 ? i ? N ) and make the subsequence of all the elements, which are at a continuous distance (i + K) till we are not out of the array X[] or at the last index. 

Examples:

Input: N = 5, K = 2, X[] = {2, 5, 5, 8, 2}
Output: 13
Explanation: The operation is performed as: 

  • Let select index i = 2 and then A2 = 5 So that next element at Kth distance from i = (i + K) = (2+2) = 4, A4 = 8, Now if we jump more next Kth index, formally (4 + 2) = 6. So it doesn’t exist or we are out of the X[]. So the subsequence becomes = {5, 8}, Which gives sum as 13. Which is maximum possible. 

Input: N = 4, K = 4, X[] = {1, 4, 5, 50}
Output: 50
Explanation: It will be optimal to choose i = 4 then A4 = 50. So the subsequence becomes {50}. Now, next (i+Kth) index doesn’t exist. Therefore the subsequence has sum as 50. Which is maximum possible. It can be verified that no sum more than 50 is possible using the given operation.

Approach: Implement the idea below to solve the problem

The problem is Greedy logic based and can be solved using the observations. 

Steps were taken to solve the problem:

  • Create an array of length N let’s say Y[].
  • Create a variable let’s say max and initialize it to a minimum integer value for storing the maximum possible sum.
  • Run a loop from i = N-1 to i ? 0 and follow the below-mentioned steps under the scope of the loop:
    • Y[i] = i + K < N ? X[i] + Y[i + K] : X[i]
  • Now just find the maximum value from Y[] by traversing it and updating the max
  • Output the value of max.

Below is the code to implement the approach:

C++




// C++ code to implement the approach
 
#include <iostream>
#include <bits/stdc++.h>
using namespace std;
 
// Method for getting maximum
// subsequence sum
void MaxSubsequenceSum(int N, int K, int X[]){
     
    int l = INT_MIN;
 
    // New array formed of size N
    int Y[N];
 
    // Variable for holding
    // maximum sum
    int sum = INT_MIN;
 
    // Traversing through loop and
    // applying logic
    for (int i = N - 1; i >= 0; i--) {
        Y[i] = i + K < N ? X[i] + Y[i + K] : X[i];
    }
 
    // Finding max from the array Y[]
    for (int i = 0; i < N; i++) {
        sum = max(Y[i], sum);
    }
 
    // Printing maximum possible sum
    cout<<sum<<endl;
     
}
 
int main() {
     
    // Inputs
    int N = 5;
    int K = 2;
    int X[] = { 2, 5, 5, 8, 2 };
     
    // Function call
    MaxSubsequenceSum(N, K, X);
    return 0;
}
 
// This code is contributed by Ritesh Jha


Java




// Java code to implement the approach
 
public class Main {
 
    // Driver function
    public static void main(String[] args)
    {
 
        // Inputs
        int N = 5;
        int K = 2;
        int X[] = { 2, 5, 5, 8, 2 };
 
        // Function call
        MaxSubsequenceSum(N, K, X);
    }
 
    // Method for getting maximum
    // subsequence sum
    static void MaxSubsequenceSum(int N, int K, int[] X)
    {
        int l = Integer.MIN_VALUE;
 
        // New array formed of size N
        int Y[] = new int[N];
 
        // Variable for holding
        // maximum sum
        int max = Integer.MIN_VALUE;
 
        // Traversing through loop and
        // applying logic
        for (int i = N - 1; i >= 0; i--) {
            Y[i] = i + K < N ? X[i] + Y[i + K] : X[i];
        }
 
        // Finding max from the array Y[]
        for (int i = 0; i < N; i++) {
            max = Math.max(Y[i], max);
        }
 
        // Printing maximum possible sum
        System.out.println(max);
    }
}


Python3




import sys
 
# Method for getting maximum
# subsequence sum
def MaxSubsequenceSum(N, K, X):
 
    l = -sys.maxsize - 1
 
    # New array formed of size N
    Y = [0] * N
 
    # Variable for holding
    # maximum sum
    sum = -sys.maxsize - 1
 
    # Traversing through loop and
    # applying logic
    for i in range(N - 1, -1, -1):
        Y[i] = X[i] + Y[i + K] if i + K < N else X[i]
 
    # Finding max from the array Y[]
    for i in range(N):
        sum = max(Y[i], sum)
 
    # Printing maximum possible sum
    print(sum)
 
# Inputs
N = 5
K = 2
X = [2, 5, 5, 8, 2]
 
# Function call
MaxSubsequenceSum(N, K, X)


C#




// C# code to implement the approach
using System;
 
public class GFG {
 
  // Method for getting maximum subsequence sum
  static void MaxSubsequenceSum(int N, int K, int[] X)
  {
    int l = Int32.MinValue;
 
    // New array formed of size N
    int[] Y = new int[N];
 
    // Variable for holding maximum sum
    int max = Int32.MinValue;
 
    // Traversing through loop and applying logic
    for (int i = N - 1; i >= 0; i--) {
      Y[i] = i + K < N ? X[i] + Y[i + K] : X[i];
    }
 
    // Finding max from the array Y[]
    for (int i = 0; i < N; i++) {
      max = Math.Max(Y[i], max);
    }
 
    // Printing maximum possible sum
    Console.WriteLine(max);
  }
 
  static public void Main()
  {
 
    // Code
    // Inputs
    int N = 5;
    int K = 2;
    int[] X = { 2, 5, 5, 8, 2 };
 
    // Function call
    MaxSubsequenceSum(N, K, X);
  }
}
 
// This code is contributed by sankar.


Javascript




// JavaScript code to implement the approach
 
// Method for getting maximum
// subsequence sum
function MaxSubsequenceSum(N, K, X){
 
    let l = Number.MIN_SAFE_INTEGER;
     
    // New array formed of size N
    let Y = new Array(N);
     
    // Variable for holding
    // maximum sum
    let sum = Number.MIN_SAFE_INTEGER;
     
    // Traversing through loop and
    // applying logic
    for (let i = N - 1; i >= 0; i--) {
        Y[i] = i + K < N ? X[i] + Y[i + K] : X[i];
    }
     
    // Finding max from the array Y[]
    for (let i = 0; i < N; i++) {
        sum = Math.max(Y[i], sum);
    }
     
    // Printing maximum possible sum
    console.log(sum);
}
 
// Inputs
let N = 5;
let K = 2;
let X = [ 2, 5, 5, 8, 2 ];
 
// Function call
MaxSubsequenceSum(N, K, X);
 
// This code is contributed by prasad264


Output

13

Time Complexity: O(N)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
13 Mar, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments