Matplotlib is an amazing visualization library in Python for 2D plots of arrays. Matplotlib is a multi-platform data visualization library built on NumPy arrays and designed to work with the broader SciPy stack.
matplotlib.patches.Rectangle
The matplotlib.patches.Rectangle
class is used to rectangle patch to a plot with lower left at xy = (x, y) with specified width, height and rotation angle.
Syntax: class matplotlib.patches.Rectangle(xy, width, height, angle=0.0, **kwargs)
Parameters:
- xy: Lower left point to start the rectangle plotting
- width : width of the rectangle
- height: Height of the rectangle.
- angle: Angle of rotation of the rectangle.
The below table has a list of valid kwargs;
PROPERTY | DESCRIPTION |
---|---|
agg_filter | a filter function that takes a (m, n, 3) float array and a dpi value that returns a (m, n, 3) array |
alpha | float or None |
animated | bool |
antialiased or aa | unknown |
capstyle | {‘butt’, ’round’, ‘projecting’} |
clip_box | Bbox |
clip_on | bool |
clip_path | [(Path, Transform)|Patch|None] |
color | color or sequence of rgba tuples |
contains | callable |
edgecolor or ec or edgecolors | color or None or ‘auto’ |
facecolor or fc or facecolors | color or None |
figure | figure |
fill | bool |
gid | str |
hatch | {‘/’, ‘\’, ‘|’, ‘-‘, ‘+’, ‘x’, ‘o’, ‘O’, ‘.’, ‘*’} |
in_layout | bool |
joinstyle | {‘miter’, ’round’, ‘bevel’} |
linestyle or ls | {‘-‘, ‘–‘, ‘-.’, ‘:’, ”, (offset, on-off-seq), …} |
linewidth or linewidths or lw | float or None |
path_effects | AbstractPathEffect |
picker | None or bool or float or callable |
path_effects | AbstractPathEffect |
picker | float or callable[[Artist, Event], Tuple[bool, dict]] |
rasterized | bool or None |
sketch_params | (scale: float, length: float, randomness: float) |
snap | bool or None |
transform | matplotlib.transforms.Transform |
url | str |
visible | bool |
zorder | float |
Example 1:
import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import Rectangle # The image X = np.arange( 16 ).reshape( 4 , 4 ) # highlight some feature in the # middle boxes. fig = plt.figure() ax = fig.add_subplot( 111 ) ax.imshow(X, cmap = plt.cm.gray, interpolation = 'nearest' ) ax.add_patch( Rectangle(( 0.5 , 0.5 ), 2 , 2 , fc = 'none' , ec = 'g' , lw = 10 ) ) plt.show() |
Output:
Example 2:
import matplotlib import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot( 111 ) rect1 = matplotlib.patches.Rectangle(( - 200 , - 100 ), 400 , 200 , color = 'green' ) rect2 = matplotlib.patches.Rectangle(( 0 , 150 ), 300 , 20 , color = 'pink' ) rect3 = matplotlib.patches.Rectangle(( - 300 , - 50 ), 40 , 200 , color = 'yellow' ) ax.add_patch(rect1) ax.add_patch(rect2) ax.add_patch(rect3) plt.xlim([ - 400 , 400 ]) plt.ylim([ - 400 , 400 ]) plt.show() |
Output: