Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library.
The Axes Class contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets the coordinate system. And the instances of Axes supports callbacks through a callbacks attribute.
Example:
import datetime import matplotlib.pyplot as plt from matplotlib.dates import DayLocator, HourLocator, DateFormatter, drange import numpy as np date1 = datetime.datetime( 2000 , 3 , 2 ) date2 = datetime.datetime( 2000 , 3 , 6 ) delta = datetime.timedelta(hours = 6 ) dates = drange(date1, date2, delta) y = np.arange( len (dates)) fig, ax = plt.subplots() ax.plot_date(dates, y * * 2 ) ax.set_xlim(dates[ 0 ], dates[ - 1 ]) ax.xaxis.set_major_locator(DayLocator()) ax.xaxis.set_minor_locator(HourLocator( range ( 0 , 25 , 6 ))) ax.xaxis.set_major_formatter(DateFormatter( '% Y-% m-% d' )) ax.fmt_xdata = DateFormatter( '% Y-% m-% d % H:% M:% S' ) fig.autofmt_xdate() plt.title( "Matplotlib Axes Class Example" ) plt.show() |
Output:
matplotlib.axes.Axes.plot() Function
The Axes.plot() function in axes module of matplotlib library is used to plot y versus x as lines and/or markers.
Syntax: Axes.plot(self, *args, scalex=True, scaley=True, data=None, **kwargs)
Parameters: This method accept the following parameters that are described below:
- x, y: These parameter are the horizontal and vertical coordinates of the data points. x values are optional.
- fmt: This parameter is an optional parameter and it contains the string value.
- data: This parameter is an optional parameter and it is an object with labelled data.
Returns: This returns the following:
- lines:This returns the list of Line2D objects representing the plotted data.
Below examples illustrate the matplotlib.axes.Axes.plot() function in matplotlib.axes:
Example #1:
# Implementation of matplotlib function import matplotlib.pyplot as plt import numpy as np # make an agg figure fig, ax = plt.subplots() ax.plot([ 1 , 2 , 3 ]) ax.set_title( 'matplotlib.axes.Axes.plot() example 1' ) fig.canvas.draw() plt.show() |
Output:
Example #2:
# Implementation of matplotlib function import matplotlib.pyplot as plt import numpy as np # Fixing random state for reproducibility np.random.seed( 19680801 ) # create random data xdata = np.random.random([ 2 , 10 ]) # split the data into two parts xdata1 = xdata[ 0 , :] xdata2 = xdata[ 1 , :] # sort the data so it makes clean curves xdata1.sort() xdata2.sort() # create some y data points ydata1 = xdata1 * * 2 ydata2 = 1 - xdata2 * * 3 # plot the data fig = plt.figure() ax = fig.add_subplot( 1 , 1 , 1 ) ax.plot(xdata1, ydata1, color = 'tab:blue' ) ax.plot(xdata2, ydata2, color = 'tab:orange' ) # set the limits ax.set_xlim([ 0 , 1 ]) ax.set_ylim([ 0 , 1 ]) ax.set_title( 'matplotlib.axes.Axes.plot() example 2' ) # display the plot plt.show() |
Output: