Given a doubly linked list, write a function to sort the doubly linked list in increasing order using merge sort.
For example, the following doubly linked list should be changed to 24810
Merge sort for singly linked list is already discussed. The important change here is to modify the previous pointers also when merging two lists.
Below is the implementation of merge sort for doubly linked list.
Java
// Java program to implement merge sort in // singly linked list // Linked List Class class LinkedList { // Head of list static Node head; // Node Class static class Node { int data; Node next, prev; // Constructor to create a // new node Node( int d) { data = d; next = prev = null ; } } void print(Node node) { Node temp = node; System.out.println( "Forward Traversal using next pointer" ); while (node != null ) { System.out.print(node.data + " " ); temp = node; node = node.next; } System.out.println( "Backward Traversal using prev pointer" ); while (temp != null ) { System.out.print(temp.data + " " ); temp = temp.prev; } } // Split a doubly linked list (DLL) into // 2 DLLs of half sizes Node split(Node head) { Node fast = head, slow = head; while (fast.next != null && fast.next.next != null ) { fast = fast.next.next; slow = slow.next; } Node temp = slow.next; slow.next = null ; return temp; } Node mergeSort(Node node) { if (node == null || node.next == null ) { return node; } Node second = split(node); // Recur for left and right halves node = mergeSort(node); second = mergeSort(second); // Merge the two sorted halves return merge(node, second); } // Function to merge two linked lists Node merge(Node first, Node second) { // If first linked list is empty if (first == null ) { return second; } // If second linked list is empty if (second == null ) { return first; } // Pick the smaller value if (first.data < second.data) { first.next = merge(first.next, second); first.next.prev = first; first.prev = null ; return first; } else { second.next = merge(first, second.next); second.next.prev = second; second.prev = null ; return second; } } // Driver code public static void main(String[] args) { LinkedList list = new LinkedList(); list.head = new Node( 10 ); list.head.next = new Node( 30 ); list.head.next.next = new Node( 3 ); list.head.next.next.next = new Node( 4 ); list.head.next.next.next.next = new Node( 20 ); list.head.next.next.next.next.next = new Node( 5 ); Node node = null ; node = list.mergeSort(head); System.out.println( "Linked list after sorting :" ); list.print(node); } } // This code is contributed by Mayank Jaiswal |
Output:
Linked List after sorting Forward Traversal using next pointer 3 4 5 10 20 30 Backward Traversal using prev pointer 30 20 10 5 4 3
Time Complexity: Time complexity of the above implementation is same as time complexity of MergeSort for arrays. It takes Θ(nLogn) time.
Space Complexity:O(1). We are only using constant amount of extra space.
You may also like to see QuickSort for doubly linked list
Please refer complete article on Merge Sort for Doubly Linked List for more details!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!