Monday, November 18, 2024
Google search engine
HomeLanguagesHow to skip rows while reading csv file using Pandas?

How to skip rows while reading csv file using Pandas?

Python is a good language for doing data analysis because of the amazing ecosystem of data-centric python packages. Pandas package is one of them and makes importing and analyzing data so much easier.

Here, we will discuss how to skip rows while reading csv file. We will use read_csv() method of Pandas library for this task.

Syntax: pd.read_csv(filepath_or_buffer, sep=’, ‘, delimiter=None, header=’infer’, names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, iterator=False, chunksize=None, compression=’infer’, thousands=None, decimal=b’.’, lineterminator=None, quotechar=’”‘, quoting=0, escapechar=None, comment=None, encoding=None, dialect=None, tupleize_cols=None, error_bad_lines=True, warn_bad_lines=True, skipfooter=0, doublequote=True, delim_whitespace=False, low_memory=True, memory_map=False, float_precision=None) 
 

Some useful parameters are given below : 
 

Parameter Use
filepath_or_buffer URL or Dir location of file
sep Stands for separator, default is ‘, ‘ as in csv(comma separated values)
index_col This parameter is use to make passed column as index instead of 0, 1, 2, 3…r
header This parameter is use to make passed row/s[int/int list] as header
use_cols This parameter is Only uses the passed col[string list] to make data frame
squeeze If True and only one column is passed then returns pandas series
skiprows This parameter is use to skip passed rows in new data frame
skipfooter This parameter is use to skip Number of lines at bottom of file

For downloading the student.csv file Click Here

Method 1: Skipping N rows from the starting while reading a csv file. 

Code:  

Python3




# Importing Pandas library
import pandas as pd
 
# Skipping 2 rows from start in csv
# and initialize it to a  dataframe
df = pd.read_csv("students.csv",
                  skiprows = 2)
 
# Show the dataframe
df


Output : 
 

csv file content

Method 2: Skipping rows at specific positions while reading a csv file. 

Code: 

Python3




# Importing Pandas library
import pandas as pd
 
# Skipping rows at specific position
df = pd.read_csv("students.csv",
                  skiprows = [0, 2, 5])
 
# Show the dataframe
df


Output : 
 

csv file content_6

Method 3: Skipping N rows from the starting except column names while reading a csv file. 

Code:  

Python3




# Importing Pandas library
import pandas as pd
 
# Skipping 2 rows from start
# except the column names
df = pd.read_csv("students.csv",
                 skiprows = [i for i in range(1, 3) ])
 
# Show the dataframe
df


Output : 
 

csv file content_5

Method 4: Skip rows based on a condition while reading a csv file. 

Code:  

Python3




# Importing Pandas library
import pandas as pd
 
# function for checking and
# skipping every 3rd line
def logic(index):
 
    if index % 3 == 0:
        return True
 
    return False
 
# Skipping rows based on a condition
df = pd.read_csv("students.csv",
                 skiprows = lambda x: logic(x) )
 
# Show the dataframe
df


Output : 
 

csv file content_4

Method 5: Skip N rows from the end while reading a csv file. 

Code:  

Python3




# Importing Pandas library
import pandas as pd
 
# Skipping 2 rows from end
df = pd.read_csv("students.csv",
                  skipfooter = 5,
                  engine = 'python')
 
# Show the dataframe
df


Output : 
 

csv file content_3

 

RELATED ARTICLES

Most Popular

Recent Comments