In this article, we will discuss how to drop the first row in Pandas Dataframe using Python.
Dataset in use:
Method 1: Using iloc() function
Here this function is used to drop the first row by using row index.
Syntax:
df.iloc[row_start:row_end , column_start:column_end]
where,
- row_start specifies first row
- row_end specifies last row
- column_start specifies first column
- column_end specifies last column
We can drop the first row by excluding the first row
Syntax:
data.iloc[1: , :]
Example: Drop the first row
Python3
# import pandas module import pandas as pd # create student dataframe with 3 columns # and 4 rows data = pd.DataFrame({ 'id' : [ 1 , 2 , 3 , 4 ], 'name' : [ 'sai' , 'navya' , 'reema' , 'thanuja' ], 'age' : [ 21 , 22 , 21 , 22 ]}) # drop first row data.iloc[ 1 :, :] |
Output:
Method 2: Using drop() function
Here we are using the drop() function to remove first row using the index parameter set to 0
Syntax:
data.drop(index=0)
where data is the input dataframe
Example: Drop the first row
Python3
# import pandas module import pandas as pd # create student dataframe with 3 columns # and 4 rows data = pd.DataFrame({ 'id' : [ 1 , 2 , 3 , 4 ], 'name' : [ 'sai' , 'navya' , 'reema' , 'thanuja' ], 'age' : [ 21 , 22 , 21 , 22 ]}) # drop first row data.drop(index = 0 ) |
Output:
Method 3: Using tail() function
Here tail() is used to remove the last n rows, to remove the first row, we have to use the shape function with -1 index.
Syntax:
data.tail(data.shape[0]-1)
where data is the input dataframe
Example: Drop the first row
Python3
# import pandas module import pandas as pd # create student dataframe with 3 columns # and 4 rows data = pd.DataFrame({ 'id' : [ 1 , 2 , 3 , 4 ], 'name' : [ 'sai' , 'navya' , 'reema' , 'thanuja' ], 'age' : [ 21 , 22 , 21 , 22 ]}) # drop first row data.tail(data.shape[ 0 ] - 1 ) |
Output: