Saturday, November 16, 2024
Google search engine
HomeLanguagesHow to Count Distinct Values of a Pandas Dataframe Column?

How to Count Distinct Values of a Pandas Dataframe Column?

Let’s see How to Count Distinct Values of a Pandas Dataframe Column.

Consider a tabular structure as given below which has to be created as Dataframe. The columns are height, weight, and age. The records of 8 students form the rows. 

  height weight age
Steve 165    63.5    20
Ria 165     64   22
Nivi 164    63.5 22
Jane 158     54 21
Kate 167    63.5 23
Lucy 160    62 22
Ram 158     64 20
Niki 165 64 21

The first step is to create the Dataframe for the above tabulation. Look at the code snippet below:

Python3




# import library
import pandas as pd
 
# create a Dataframe
df = pd.DataFrame({
  'height' : [165, 165, 164,
              158, 167, 160,
              158, 165],
   
  'weight' : [63.5, 64, 63.5,
              54, 63.5, 62,
              64, 64],
   
  'age' : [20, 22, 22,
           21, 23, 22,
           20, 21]},
   
   index = ['Steve', 'Ria', 'Nivi',
            'Jane', 'Kate', 'Lucy',
            'Ram', 'Niki'])
 
# show the Dataframe
print(df)


Output:

height  weight  age
Steve 165 63.5 20
Ria 165 64.0 22
Nivi 164 63.5 22
Jane 158 54.0 21
Kate 167 63.5 23
Lucy 160 62.0 22
Ram 158 64.0 20
Niki 165 64.0 21

Using for loop

The Dataframe has been created and one can hard coded using for loop and count the number of unique values in a specific column. For example In the above table, if one wishes to count the number of unique values in the column height. The idea is to use a variable cnt for storing the count and a list visited that has the previously visited values. Then for loop that iterates through the ‘height’ column and for each value, it checks whether the same value has already been visited in the visited list. If the value was not visited previously, then the count is incremented by 1.

Below is the implementation:

Python3




# import library
import pandas as pd
 
# create a Dataframe
df = pd.DataFrame({
  'height' : [165, 165, 164,
              158, 167, 160,
              158, 165],
   
  'weight' : [63.5, 64, 63.5,
              54, 63.5, 62,
              64, 64],
   
  'age' : [20, 22, 22,
           21, 23, 22,
           20, 21]},
   
   index = ['Steve', 'Ria', 'Nivi',
            'Jane', 'Kate', 'Lucy',
            'Ram', 'Niki'])
 
# variable to hold the count
cnt = 0
 
# list to hold visited values
visited = []
 
# loop for counting the unique
# values in height
for i in range(0, len(df['height'])):
   
    if df['height'][i] not in visited:
       
        visited.append(df['height'][i])
         
        cnt += 1
 
print("No.of.unique values :",
      cnt)
 
print("unique values :",
      visited)


Output :

No.of.unique values : 5
unique values : [165, 164, 158, 167, 160]

But this method is not so efficient when the Dataframe grows in size and contains thousands of rows and columns. To give an efficient there are three methods available which are listed below:

  • pandas.unique()
  • Dataframe.nunique()
  • Series.value_counts()

Method 1: Using unique()

The unique method takes a 1-D array or Series as an input and returns a list of unique items in it. The return value is a NumPy array and the contents in it based on the input passed. If indices are supplied as input, then the return value will also be the indices of the unique value. 

Syntax: pandas.unique(Series)

Example:

Python3




# import library
import pandas as pd
 
# create a Dataframe
df = pd.DataFrame({
  'height' : [165, 165, 164,
              158, 167, 160,
              158, 165],
   
  'weight' : [63.5, 64, 63.5,
              54, 63.5, 62,
              64, 64],
   
  'age' : [20, 22, 22,
           21, 23, 22,
           20, 21]},
   
   index = ['Steve', 'Ria', 'Nivi',
            'Jane', 'Kate', 'Lucy',
            'Ram', 'Niki'])
 
# counting unique values
n = len(pd.unique(df['height']))
 
print("No.of.unique values :",
      n)


Output:

No.of.unique values : 5

Method 2: Using Dataframe.nunique()

This method returns the count of unique values in the specified axis. The syntax is :

Syntax: Dataframe.nunique (axis=0/1, dropna=True/False)

Example:

Python3




# import library
import pandas as pd
 
# create a Dataframe
df = pd.DataFrame({
  'height' : [165, 165, 164,
              158, 167, 160,
              158, 165],
   
  'weight' : [63.5, 64, 63.5,
              54, 63.5, 62,
              64, 64],
   
  'age' : [20, 22, 22,
           21, 23, 22,
           20, 21]},
   
   index = ['Steve', 'Ria', 'Nivi',
            'Jane', 'Kate', 'Lucy',
            'Ram', 'Niki'])
 
# check the values of
# each row for each column
n = df.nunique(axis=0)
 
print("No.of.unique values in each column :\n",
      n)


Output:

No.of.unique values in each column :
height 5
weight 4
age 4
dtype: int64

To get the number of unique values in a specified column:

 Syntax: Dataframe.col_name.nunique()

Example:

Python3




# import library
import pandas as pd
 
# create a Dataframe
df = pd.DataFrame({
  'height' : [165, 165, 164,
              158, 167, 160,
              158, 165],
   
  'weight' : [63.5, 64, 63.5,
              54, 63.5, 62,
              64, 64],
   
  'age' : [20, 22, 22,
           21, 23, 22,
           20, 21]},
   
   index = ['Steve', 'Ria', 'Nivi',
            'Jane', 'Kate', 'Lucy',
            'Ram', 'Niki'])
 
# count no. of unique
# values in height column
n = df.height.nunique()
 
print("No.of.unique values in height column :",
      n)


Output:

No.of.unique values in height column : 5

Method 3: Using Series.value_counts()

This method returns the count of all unique values in the specified column. 

Syntax: Series.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True)

Example:

Python3




# import library
import pandas as pd
 
# create a Dataframe
df = pd.DataFrame({
  'height' : [165, 165, 164,
              158, 167, 160,
              158, 165],
   
  'weight' : [63.5, 64, 63.5,
              54, 63.5, 62,
              64, 64],
   
  'age' : [20, 22, 22,
           21, 23, 22,
           20, 21]},
   
   index = ['Steve', 'Ria', 'Nivi',
            'Jane', 'Kate', 'Lucy',
            'Ram', 'Niki'])
 
 
# getting the list of unique values
li = list(df.height.value_counts())
 
# print the unique value counts
print("No.of.unique values :",
      len(li))


Output:

No.of.unique values : 5

RELATED ARTICLES

Most Popular

Recent Comments