Pandas DataFrame is a Two-dimensional data structure of mutable size and heterogeneous tabular data. There are different Built-in data types available in Python. Two methods used to check the datatypes are pandas.DataFrame.dtypes and pandas.DataFrame.select_dtypes.
Creating a Dataframe to Check DataType in Pandas DataFrame
Consider a dataset of a shopping store having data about Customer Serial Number, Customer Name, Product ID of the purchased item, Product Cost, and Date of Purchase.
Python3
#importing pandas as pd import pandas as pd # Create the dataframe df = pd.DataFrame({ 'Cust_No' : [ 1 , 2 , 3 ], 'Cust_Name' : [ 'Alex' , 'Bob' , 'Sophie' ], 'Product_id' : [ 12458 , 48484 , 11311 ], 'Product_cost' : [ 65.25 , 25.95 , 100.99 ], 'Purchase_Date' : [pd.Timestamp( '20180917' ), pd.Timestamp( '20190910' ), pd.Timestamp( '20200610' )] }) # Print the dataframe df |
Output:
Check the Data Type in Pandas using pandas.DataFrame.dtypes
For users to check the DataType of a particular Dataset or particular column from the dataset can use this method. This method returns a list of data types for each column or also returns just a data type of a particular column
Example 1:
Python3
# Print a list datatypes of all columns df.dtypes |
Output:
Example 2:
Python3
# print datatype of particular column df.Cust_No.dtypes |
Output:
dtype('int64')
Example 3:
Python3
# Checking the Data Type of a Particular Column df[ 'Product_cost' ].dtypes |
Output:
dtype('float64')
Check the Data Type in Pandas using pandas.DataFrame.select_dtypes
Unlike checking Data Type user can alternatively perform a check to get the data for a particular Datatype if it is existing otherwise get an empty dataset in return. This method returns a subset of the DataFrame’s columns based on the column dtypes.
Example 1:
Python3
# Returns Two column of int64 df.select_dtypes(include = 'int64' ) |
Output:
Example 2:
Python3
# Returns columns excluding int64 df.select_dtypes(exclude = 'int64' ) |
Output :
Example 3 :
Python3
# Print an empty list as there is # no column of bool type df.select_dtypes(include = "bool" ) |
Output :