In the Pandas DataFrame, we can find the specified row value with the function iloc(). In this function, we pass the row number as a parameter.
pandas.DataFrame.iloc[]
Syntax : pandas.DataFrame.iloc[] Parameters :
- Index Position : Index position of rows in integer or list of integer.
Return type : Data frame or Series depending on parameters
Example 1: Specific row in a given Pandas DataFrame
python3
# importing the module import pandas as pd # creating a DataFrame data = { '1' : [ 'g' , 'e' , 'e' ], '2' : [ 'k' , 's' , 'f' ], '3' : [ 'o' , 'r' , 'g' ], '4' : [ 'e' , 'e' , 'k' ]} df = pd.DataFrame(data) print ( "Original DataFrame" ) display(df) print ( "Value of row 1" ) display(df.iloc[ 1 ]) |
Output :
Original DataFrame
1 2 3 4
0 g k o e
1 e s r e
2 e f g k
Value of row 1
1 e
2 s
3 r
4 e
Name: 1, dtype: object
Example 2: Get row in a given Pandas DataFrame
python3
# importing the module import pandas as pd # creating a DataFrame data = { 'Name' : [ 'Simon' , 'Marsh' , 'Gaurav' , 'Alex' , 'Selena' ], 'Maths' : [ 8 , 5 , 6 , 9 , 7 ], 'Science' : [ 7 , 9 , 5 , 4 , 7 ], 'English' : [ 7 , 4 , 7 , 6 , 8 ]} df = pd.DataFrame(data) print ( "Original DataFrame" ) display(df) print ( "Value of row 3 (Alex)" ) display(df.iloc[ 3 ]) |
Output :
Original DataFrame
Name Maths Science English
0 Simon 8 7 7
1 Marsh 5 9 4
2 Gaurav 6 5 7
3 Alex 9 4 6
4 Selena 7 7 8
Value of row 3 (Alex)
Name Alex
Maths 9
Science 4
English 6
Name: 3, dtype: object