Tuesday, November 19, 2024
Google search engine
HomeData Modelling & AIFind sum of f(s) for all the chosen sets from the given...

Find sum of f(s) for all the chosen sets from the given array

Given an array arr[] of size N and an integer K. The task is to find the sum of f(S) over all the possible sets. For a finite set X, f(X) is max(X) – min(X). Set X contains any K numbers from the given array. Output can be very large, so, output answer modulo 109+7. Examples:

Input: arr[] = {1, 1, 3, 4}, K = 2 Output: 11 Sets are {1, 1}, {1, 3}, {1, 4}, {1, 3}, {1, 4}, {3, 4} and f(X) are 0, 2, 3, 2, 3, 1. Input: arr[] = {10, -10, 10, -10, 10, -10}, K = 3 Output: 360 18 sets with f(X) equals to 20 and 2 sets with f(x) equals to 0

Approach: On assuming that arr is sorted beforehand, the idea is to perform precomputation to calculate binomial coefficients fast by precalculating the factorials till N and their inverses. The sum is calculated separately for min and max. In other words, (? max(S)) – (? min(S)) instead of ? f(S). For simplicity, assume that arri is distinct from each other. The possible value of max(S) is any element of arr. Therefore, by counting the number of S such that max(S) = arri for each i, you can find ? max(S). The necessary and sufficient condition of max(S) = arri is S contains arri, and also contains K-1 elements less than arri, so such number can be directly calculated by using binomial coefficients. You can calculate ? minS similarly. If Ai contains duplicates, you can prove that the explanation above also holds if you assume arbitrary order between arr is with the same value (for example, consider a lexicographical order of(arri, i and count the number of elements satisfying max(S) = (Ai, i). Therefore, you can also process in the same way in this case. Below is the implementation of the above approach: 

CPP




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
#define N 100005
#define mod (int)(1e9 + 7)
 
// To store the factorial and the
// factorial mod inverse of a number
int factorial[N], modinverse[N];
 
// Function to find (a ^ m1) % mod
int power(int a, int m1)
{
    if (m1 == 0)
        return 1;
    else if (m1 == 1)
        return a;
    else if (m1 == 2)
        return (1LL * a * a) % mod;
    else if (m1 & 1)
        return (1LL * a
                * power(power(a, m1 / 2), 2))
               % mod;
    else
        return power(power(a, m1 / 2), 2) % mod;
}
 
// Function to find factorial
// of all the numbers
void factorialfun()
{
    factorial[0] = 1;
    for (int i = 1; i < N; i++)
        factorial[i] = (1LL
                        * factorial[i - 1] * i)
                       % mod;
}
 
// Function to find the factorial
// mod inverse of all the numbers
void modinversefun()
{
    modinverse[N - 1]
        = power(factorial[N - 1], mod - 2) % mod;
 
    for (int i = N - 2; i >= 0; i--)
        modinverse[i] = (1LL * modinverse[i + 1]
                         * (i + 1))
                        % mod;
}
 
// Function to return nCr
int binomial(int n, int r)
{
    if (r > n)
        return 0;
 
    int a = (1LL * factorial[n]
             * modinverse[n - r])
            % mod;
 
    a = (1LL * a * modinverse[r]) % mod;
    return a;
}
 
// Function to find sum of f(s) for all
// the chosen sets from the given array
int max_min(int a[], int n, int k)
{
    // Sort the given array
    sort(a, a + n);
 
    // Calculate the factorial and
    // modinverse of all elements
    factorialfun();
    modinversefun();
 
    long long ans = 0;
    k--;
 
    // For all the possible sets
    // Calculate max(S) and min(S)
    for (int i = 0; i < n; i++) {
        int x = n - i - 1;
        if (x >= k)
            ans -= binomial(x, k) * a[i] % mod;
 
        int y = i;
        if (y >= k)
            ans += binomial(y, k) * a[i] % mod;
 
        ans = (ans + mod) % mod;
    }
 
    return (int)(ans);
}
 
// Driver code
int main()
{
    int a[] = { 1, 1, 3, 4 }, k = 2;
    int n = sizeof(a) / sizeof(int);
 
    cout << max_min(a, n, k);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG{
 
static int N = 100005;
static int mod = 1000000007;
static int temp = 391657242;
 
// To store the factorial and the
// factorial mod inverse of a number
static int []factorial = new int[N];
static int []modinverse = new int[N];
 
// Function to find (a ^ m1) % mod
static int power(int a, int m1)
{
    if (m1 == 0)
        return 1;
    else if (m1 == 1)
        return a;
    else if (m1 == 2)
        return (a * a) % mod;
    else if ((m1 & 1)!=0)
        return (a * power(power(a, m1 / 2), 2)) % mod;
    else
        return power(power(a, m1 / 2), 2) % mod;
}
 
// Function to find factorial
// of all the numbers
static void factorialfun()
{
    factorial[0] = 1;
    for (int i = 1; i < N; i++)
        factorial[i] = (factorial[i - 1] * i)% mod;
}
 
// Function to find the factorial
// mod inverse of all the numbers
static void modinversefun()
{
    modinverse[N - 1] = power(factorial[N - 1], mod - 2) % mod;
 
    for (int i = N - 2; i >= 0; i--)
        modinverse[i] = (modinverse[i + 1]*(i + 1))%mod;
}
 
// Function to return nCr
static int binomial(int n, int r)
{
    if (r > n)
        return 0;
 
    int a = (factorial[n] * modinverse[n - r]) % mod;
 
    a = (a * modinverse[r]) % mod;
    return a;
}
 
// Function to find sum of f(s) for all
// the chosen sets from the given array
static int max_min(int a[], int n, int k)
{
    // Sort the given array
    Arrays.sort(a);
 
    // Calculate the factorial and
    // modinverse of all elements
    factorialfun();
    modinversefun();
 
    int ans = 0;
    k--;
 
    // For all the possible sets
    // Calculate max(S) and min(S)
    for (int i = 0; i < n; i++) {
        int x = n - i - 1;
        if (x >= k)
            ans -= binomial(x, k) * a[i] % mod;
 
        int y = i;
        if (y >= k)
            ans += binomial(y, k) * a[i] % mod;
 
        ans = (ans + mod) % mod;
    }
 
    return ans%temp;
}
 
// Driver code
public static void main(String args[])
{
    int []a = { 1, 1, 3, 4 };
    int k = 2;
    int n = a.length;
 
    System.out.println(max_min(a, n, k));
}
}
 
// This code is contributed by Surendra_Gangwar


Python3




# Python3 implementation of the approach
N = 100005
mod = (10 ** 9 + 7)
 
# To store the factorial and the
# factorial mod inverse of a number
factorial = [0]*N
modinverse = [0]*N
 
# Function to find factorial
# of all the numbers
def factorialfun():
    factorial[0] = 1
    for i in range(1, N):
        factorial[i] = (factorial[i - 1] * i)%mod
 
# Function to find the factorial
# mod inverse of all the numbers
def modinversefun():
    modinverse[N - 1] = pow(factorial[N - 1],
                            mod - 2, mod) % mod
 
    for i in range(N - 2, -1, -1):
        modinverse[i] = (modinverse[i + 1]* (i + 1))% mod
 
# Function to return nCr
def binomial(n, r):
    if (r > n):
        return 0
 
    a = (factorial[n]* modinverse[n - r])% mod
 
    a = (a * modinverse[r]) % mod
    return a
 
# Function to find sum of f(s) for all
# the chosen sets from the given array
def max_min(a, n, k):
 
    # Sort the given array
    a = sorted(a)
 
    # Calculate the factorial and
    # modinverse of all elements
    factorialfun()
    modinversefun()
 
    ans = 0
    k -= 1
 
    # For all the possible sets
    # Calculate max(S) and min(S)
    for i in range(n):
        x = n - i - 1
        if (x >= k):
            ans -= (binomial(x, k) * a[i]) % mod
 
        y = i
        if (y >= k):
            ans += (binomial(y, k) * a[i]) % mod
 
        ans = (ans + mod) % mod
 
    return ans
 
# Driver code
 
a = [1, 1, 3, 4]
k = 2
n = len(a)
 
print(max_min(a, n, k))
 
# This code is contributed by mohit kumar 29


C#




// C# implementation of the approach
using System;
     
class GFG{
     
    static int N = 100005;
    static int mod = 1000000007;
    static int temp = 391657242;
     
    // To store the factorial and the
    // factorial mod inverse of a number
    static int []factorial = new int[N];
    static int []modinverse = new int[N];
     
    // Function to find (a ^ m1) % mod
    static int power(int a, int m1)
    {
        if (m1 == 0)
            return 1;
        else if (m1 == 1)
            return a;
        else if (m1 == 2)
            return (a * a) % mod;
        else if ((m1 & 1)!=0)
            return (a * power(power(a, m1 / 2), 2)) % mod;
        else
            return power(power(a, m1 / 2), 2) % mod;
    }
     
    // Function to find factorial
    // of all the numbers
    static void factorialfun()
    {
        factorial[0] = 1;
        for (int i = 1; i < N; i++)
            factorial[i] = (factorial[i - 1] * i)% mod;
    }
     
    // Function to find the factorial
    // mod inverse of all the numbers
    static void modinversefun()
    {
        modinverse[N - 1] = power(factorial[N - 1], mod - 2) % mod;
     
        for (int i = N - 2; i >= 0; i--)
            modinverse[i] = (modinverse[i + 1]*(i + 1)) % mod;
    }
     
    // Function to return nCr
    static int binomial(int n, int r)
    {
        if (r > n)
            return 0;
     
        int a = (factorial[n] * modinverse[n - r]) % mod;
     
        a = (a * modinverse[r]) % mod;
        return a;
    }
     
    // Function to find sum of f(s) for all
    // the chosen sets from the given array
    static int max_min(int []a, int n, int k)
    {
        // Sort the given array
        Array.Sort(a);
     
        // Calculate the factorial and
        // modinverse of all elements
        factorialfun();
        modinversefun();
     
        int ans = 0;
        k--;
     
        // For all the possible sets
        // Calculate max(S) and min(S)
        for (int i = 0; i < n; i++) {
            int x = n - i - 1;
            if (x >= k)
                ans -= binomial(x, k) * a[i] % mod;
     
            int y = i;
            if (y >= k)
                ans += binomial(y, k) * a[i] % mod;
     
            ans = (ans + mod) % mod;
        }
     
        return ans % temp;
    }
     
    // Driver code
    public static void Main(string []args)
    {
        int []a = { 1, 1, 3, 4 };
        int k = 2;
        int n = a.Length;
     
        Console.WriteLine(max_min(a, n, k));
    }
}
 
// This code is contributed by AnkitRai01


Javascript




// JS implementation of the approach
let N = 100005
let mod = BigInt(1e9 + 7)
 
// To store the factorial and the
// factorial mod inverse of a number
let factorial = new Array(N)
let modinverse = new Array(N);
 
// Function to find (a ^ m1) % mod
function power(a, m1)
{
    if (m1 == 0n)
        return 1n;
    else if (m1 == 1n)
        return a;
    else if (m1 == 2n)
        return (a * a) % mod;
    else if (m1 & 1n)
        return (a
                * power(power(a, m1 / 2n), 2n))
               % mod;
    else
        return power(power(a, m1 / 2n), 2n) % mod;
}
 
// Function to find factorial
// of all the numbers
function factorialfun()
{
    factorial[0] = 1n;
    for (let i = 1n; i < N; i++)
        factorial[i] = (factorial[i - 1n] * i)
                       % mod;
}
 
// Function to find the factorial
// mod inverse of all the numbers
function modinversefun()
{
    modinverse[N - 1]
        = power(factorial[N - 1], mod - 2n) % mod;
     
    N = BigInt(N)
    for (var i = N - 2n; i >= 0n; i--)
        modinverse[i] = (modinverse[i + 1n]
                         * (i + 1n))
                        % mod;
}
 
// Function to return nCr
function binomial(n, r)
{
    if (r > n)
        return 0n;
 
    let a = (factorial[n]
             * modinverse[n - r])
            % mod;
 
    a = (a * modinverse[r]) % mod;
    return a;
}
 
// Function to find sum of f(s) for all
// the chosen sets from the given array
function max_min(a, n, k)
{
     
    n = BigInt(n)
    // Sort the given array
    a.sort();
 
    // Calculate the factorial and
    // modinverse of all elements
    factorialfun();
    modinversefun();
 
    let ans = 0n;
    k--;
 
    // For all the possible sets
    // Calculate max(S) and min(S)
    for (var i = 0n; i < n; i++) {
        var x = n - i - 1n;
        if (x >= k)
            ans -= binomial(x, k) * a[i] % mod;
 
        var y = i;
        if (y >= k)
            ans += binomial(y, k) * a[i] % mod;
 
        ans = (ans + mod) % mod;
    }
 
    return (ans);
}
 
// Driver code
let a= [ 1n, 1n, 3n, 4n ]
let k = 2n;
let n = a.length
console.log(max_min(a, n, k))
 
// This code is contributed by phasing17


Output:

11
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
06 Sep, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments