Tuesday, November 19, 2024
Google search engine
HomeData Modelling & AIFind Numbers in L to R which is same as sum of...

Find Numbers in L to R which is same as sum of digits raised to setbit count

Given a range of number [L, R], the task is to find all numbers X in the given range such that X = sum of digits raised to setbit count of X  i.e., if there are N setbits in binary representation of X and X = x1x2x3… then X = (x1)N + (x2)N + (x3)N + . . .

Examples:  

Input: L = 0, R = 10000
Output: 1, 2, 4, 8, 4150, 9474
Explanation: For 2 (binary = 10): setbit count = 1. and 2 = 2^1.
So this is a required number. Same for the other numbers also.

Input: L = 10000, R = 1000000
Output: -1
Explanation: There are no such numbers in the given range.

 

Approach: The given problem can be solved by checking for all numbers in the range [L, R] and if they satisfy the condition or not. It can be done with the help of Brian Kernighan’s Algorithm.

Follow the steps mentioned below to solve the problem.

  • Run a loop from L to R and in every iteration check the number is index number or not.
  • First calculate number of set bits in the decimal number from its binary representation.
  • Then, Initialize Original = N, Res = 0, Index = Count of Set bits.
  • Run a loop while N > 0
    • Find last digit from the number say (L),
    • Add LIndex to Res.
    • Remove last digit from the number.
  • If Original = Res, this will be one of the required numbers.

Below is the implementation of the above approach: 

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
#define ll long long
 
// Function to return Number of
// set bits in any decimal number
int countSetBits(ll N)
{
    int Count = 0;
    while (N) {
        N = N & (N - 1);
        Count++;
    }
    return Count;
}
 
// Function to check whether the
// number is index number or not
bool check(int Index, ll N)
{
    ll Original = N, Res = 0;
   
    if(N == 0)
      return false;
   
    while (N != 0) {
        int L = N % 10;
        Res += pow(L, Index);
        N = N / 10;
    }
    return Original == Res;
}
 
// Function to find the numbers
vector<int> findNum(int l, int r)
{
    // Vector to store the numbers
    vector<int> ans;
 
    for (ll i = l; i <= r; i++) {
        int BitCount = countSetBits(i);
        if (check(BitCount, i))
            ans.push_back(i);
    }
    return ans;
}
 
// Driver Code
int main()
{
    int L = 0, R = 10000;
 
    // Function call
    vector<int> res = findNum(L, R);
           
    if(res.size()==0)
        cout << -1 << endl;
   
    for (int x : res)
        cout << x << " ";
   
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG {
 
  // Function to return Number of
  // set bits in any decimal number
  static int countSetBits(long N)
  {
    int Count = 0;
    while (N != 0) {
      N = N & (N - 1);
      Count++;
    }
    return Count;
  }
 
  // Function to check whether the
  // number is index number or not
  static boolean check(int Index, long N)
  {
    long Original = N, Res = 0;
 
    if(N == 0)
      return false;
 
    while (N != 0) {
      long L = N % 10;
      Res += Math.pow(L, Index);
      N = N / 10;
    }
    return Original == Res;
  }
 
  // Function to find the numbers
  static Vector<Integer> findNum(int l, int r)
  {
 
    // Vector to store the numbers
    Vector<Integer> ans = new Vector<Integer>();
 
    for (int i = l; i <= r; i++) {
      int BitCount = countSetBits(i);
      if (check(BitCount, i))
        ans.add(i);
    }
    return ans;
  }
 
  // Driver Code
  public static void main (String[] args) {   
    int L = 0, R = 10000;
 
    // Function call
    Vector<Integer> res = findNum(L, R);
 
    if(res.size()==0)
      System.out.println(-1);
 
    res.forEach((x) -> System.out.print(x + " "));
  }
}
 
// This code is contributed by hrithikgarg03188.


Python3




# Python code to implement the above approach
 
# Function to return Number of
# set bits in any decimal number
def countSetBits(N):
    Count = 0
    while (N):
        N = N & (N - 1)
        Count += 1
 
    return Count
 
# Function to check whether the
# number is index number or not
def check(Index, N):
 
    Original,Res = N,0
   
    if(N == 0):
      return False
   
    while (N != 0):
        L = N % 10
        Res += pow(L, Index)
        N = N // 10
 
    return Original == Res
 
# Function to find the numbers
def findNum(l, r):
 
    # Vector to store the numbers
    ans = []
 
    for i in range(l,r + 1):
        BitCount = countSetBits(i)
        if (check(BitCount, i)):
            ans.append(i)
 
    return ans
 
# Driver Code
L,R = 0,10000
 
# Function call
res = findNum(L, R)
   
if(len(res)==0):
    print(-1)
   
for x in res:
    print(x , end = " ")
 
# This code is contributed by shinjanpatra


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
public class GFG
{
  // Function to return Number of
  // set bits in any decimal number
  public static int countSetBits(long N)
  {
    int Count = 0;
    while (N != 0) {
      N = N & (N - 1);
      Count++;
    }
    return Count;
  }
 
  // Function to check whether the
  // number is index number or not
  public static bool check(int Index, long N)
  {
    long Original = N, Res = 0;
 
    if(N == 0)
      return false;
 
    while (N != 0) {
      long L = N % 10;
      Res += (long)Math.Pow(L, Index);
      N = N / 10;
    }
    return Original == Res;
  }
 
  // Function to find the numbers
  public static List<int> findNum(int l, int r)
  {
 
    // Vector to store the numbers
    List<int> ans = new List<int>();
 
    for (int i = l; i <= r; i++) {
      int BitCount = countSetBits(i);
      if (check(BitCount, i))
        ans.Add(i);
    }
    return ans;
  }
 
  // Driver Code
  public static void Main (String[] args) {   
    int L = 0, R = 10000;
 
    // Function call
    List<int> res = findNum(L, R);
 
    if(res.Count == 0)
      Console.WriteLine(-1);
 
    for (int i = 0; i < res.Count; i++)
      Console.Write(res[i] + " ");
  }
}
 
// This code is contributed by phasing17


Javascript




<script>
    // JavaScript program for the above approach
 
 
    // Function to return Number of
    // set bits in any decimal number
    const countSetBits = (N) => {
        let Count = 0;
        while (N) {
            N = N & (N - 1);
            Count++;
        }
        return Count;
    }
 
    // Function to check whether the
    // number is index number or not
    const check = (Index, N) => {
        let Original = N, Res = 0;
        while (N != 0) {
            let L = N % 10;
            Res += Math.pow(L, Index);
            N = parseInt(N / 10);
        }
        return Original == Res;
    }
 
    // Function to find the numbers
    const findNum = (l, r) => {
        // Vector to store the numbers
        let ans = [];
 
        for (let i = l; i <= r; i++) {
            let BitCount = countSetBits(i);
            if (check(BitCount, i))
                ans.push(i);
        }
        return ans;
    }
 
    // Driver Code
 
    let L = 0, R = 10000;
 
    // Function call
    let res = findNum(L, R);
    for (let x in res)
        document.write(`${res[x]} `);
 
// This code is contributed by rakeshsahni
 
</script>


Output

1 2 4 8 4150 9474 

Time Complexity: O(R * d) where d is the maximum number of bits in a number
Auxiliary Space: O(1)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
29 Apr, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments