Given an integer N, the task is to find the Nth term of the series
3, 11, 31, 69, . . . . . till Nth term.
Examples:
Input: N = 3
Output: 31Input: N = 6
Output: 223
Approach:
From the given series, find the formula for Nth term–
1st term = 1 ^ 3 + (1 + 1) = 3
2nd term = 2 ^ 3 + (2 + 1) = 11
3rd term = 3 ^ 3 + (3 + 1) = 31
4th term = 4 ^ 3 + (4 + 1) = 69
.
.
Nth term = n ^ 3 + (n + 1)
The Nth term of the given series can be generalized as-
TN = n ^ 3 + (n + 1)
Illustration:
Input: N = 5
Output: 131
Explanation:
TN = n ^ 3 + (n + 1)
= 5 ^ 3 + (5 + 1)
= 131
Below is the implementation of the above approach-
C++
// C++ program to find nth // term of the series #include <iostream> using namespace std; // Function to return nth // term of the series int find_nth_Term( int n) { return n * n * n + (n + 1); } // Driver code int main() { // Find given nth term int n = 5; // Function call cout << find_nth_Term(n) << endl; return 0; } |
Java
// Java code for the above approach import java.io.*; class GFG { // Function to return nth // term of the series static int find_nth_Term( int n) { return n * n * n + (n + 1 ); } // Driver code public static void main(String[] args) { // Find given nth term int n = 5 ; // Function call System.out.println(find_nth_Term(n)); } } // This code is contributed by Potta Lokesh |
Python
# Python program to find nth # term of the series # Function to return nth # term of the series def find_nth_Term(n): return n * n * n + (n + 1 ) # Driver code # Find given nth term n = 5 # Function call print (find_nth_Term(n)) # This code is contributed by Samim Hossain Mondal. |
C#
// C# program to find nth // term of the series using System; class GFG { // Function to return nth // term of the series static int find_nth_Term( int n) { return n * n * n + (n + 1); } // Driver code public static int Main() { // Find given nth term int n = 5; // Function call Console.WriteLine(find_nth_Term(n)); return 0; } } // This code is contributed by Taranpreet |
Javascript
<script> // Javascript program to find nth // term of the series // Function to return nth // term of the series function find_nth_Term(n) { return n * n * n + (n + 1); } // Driver code // Find given nth term let n = 5; // Function call document.write(find_nth_Term(n)) // This code is contributed by gfgking. </script> |
131
Time Complexity: O(1), since there is no loop or recursion.
Auxiliary Space: O(1), since no extra space has been taken.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!