Wednesday, November 20, 2024
Google search engine
HomeData Modelling & AIFind Lexicographically smallest String

Find Lexicographically smallest String

Given a circular string s, find whether there exists a permutation of s which is a K-periodic circular string and if it exists then find the lexicographically smallest permutation of s which is a K-periodic circular string. Return an empty string if there does not exist a valid permutation of s which is a K-periodic circular string.

Note: You can rotate the string in any direction. A K-periodic circular string is a circular string that remains the same when it is rotated by K units.

Examples:

Input: s = “abba”, K = 2
Output: abab
Explanation: “abab” when rotated by 2 units remains the same.

Input: s = “abbbbbb”, K = 4
Output: -1
Explanation: No permutation of s can be a 4-periodic circular string.

Approach: This can be solved with the following idea:

By keeping in mind, for each of the character at ith index, i == (i + k) % n == (i + 2 * k) % n == (i + 3 * k) % n, … should be same.

Below are the steps involved:

  • Intialise a map mp
    • Store frequency of each character in mp.
  • intialize a req by n/ gcd(n,k).
  • Iterate in map,
    • For each frequency, we need to add that particular character in f upto frequency/req.
  • For req time we need to add f in ans, which will be our required string.

Below is the implementation of the code:

C++




// C++ code for the above approach:
#include <bits/stdc++.h>
#include <iostream>
using namespace std;
 
// Function to find lexographically
// smallest string
string kPeriodic(string s, int k)
{
    map<char, int> mp;
 
    // Store the frequency of each element
    for (int i = 0; i < s.size(); i++)
        mp[s[i]]++;
 
    int n = s.size();
    int req = n / __gcd(n, k);
 
    // If the string cannot be formed
    for (auto t : mp)
        if (t.second % req)
            return "-1";
 
    string f = "";
 
    // Iterate in map
    for (auto t : mp) {
        int fre = t.second / req;
        while (fre--)
            f += t.first;
    }
 
    // String will be returned
    string ans = "";
    while (req--)
        ans += f;
 
    // Return the final string
    return ans;
}
 
// Driver code
int main()
{
 
    string s = "abababa";
    int k = 2;
 
    // Function call
    cout << kPeriodic(s, k);
    return 0;
}


Java




import java.util.HashMap;
import java.util.Map;
 
public class LexicographicallySmallestString {
    public static String kPeriodic(String s, int k) {
        Map<Character, Integer> mp = new HashMap<>();
 
        // Store the frequency of each element
        for (int i = 0; i < s.length(); i++) {
            char ch = s.charAt(i);
            mp.put(ch, mp.getOrDefault(ch, 0) + 1);
        }
 
        int n = s.length();
        int gcd = gcd(n, k);
        int req = n / gcd;
 
        // If the string cannot be formed
        for (Map.Entry<Character, Integer> entry : mp.entrySet()) {
            if (entry.getValue() % req != 0) {
                return "-1";
            }
        }
 
        StringBuilder f = new StringBuilder();
 
        // Iterate in map
        for (Map.Entry<Character, Integer> entry : mp.entrySet()) {
            int fre = entry.getValue() / req;
            for (int i = 0; i < fre; i++) {
                f.append(entry.getKey());
            }
        }
 
        // String will be returned
        StringBuilder ans = new StringBuilder();
        for (int i = 0; i < req; i++) {
            ans.append(f);
        }
 
        // Return the final string
        return ans.toString();
    }
 
    public static int gcd(int a, int b) {
        if (b == 0) {
            return a;
        }
        return gcd(b, a % b);
    }
 
    public static void main(String[] args) {
        String s = "abababa";
        int k = 2;
 
        // Function call
        System.out.println(kPeriodic(s, k));
    }
}


Python3




import math
 
# Function to find lexicographically
# smallest string
def k_periodic(s, k):
    mp = {}
 
    # Store the frequency of each element
    for i in range(len(s)):
        if s[i] in mp:
            mp[s[i]] += 1
        else:
            mp[s[i]] = 1
 
    n = len(s)
    req = n // math.gcd(n, k)
 
    # If the string cannot be formed
    for t in mp.items():
        if t[1] % req != 0:
            return "-1"
 
    f = ""
 
    # Iterate in map
    for t in mp.items():
        fre = t[1] // req
        f += t[0] * fre
 
    # String will be returned
    ans = ""
    for _ in range(req):
        ans += f
 
    # Return the final string
    return ans
 
# Driver code
if __name__ == "__main__":
    s = "abababa"
    k = 2
 
    # Function call
    print(k_periodic(s, k))


C#




using System;
using System.Collections.Generic;
 
class GFG
{
    // Function to find lexographically smallest string
    static string KPeriodic(string s, int k)
    {
        Dictionary<char, int> mp = new Dictionary<char, int>();
        // Store the frequency of the each element
        foreach (char c in s)
        {
            if (mp.ContainsKey(c))
                mp++;
            else
                mp = 1;
        }
        int n = s.Length;
        int req = n / GCD(n, k);
        // If the string cannot be formed
        foreach (var t in mp)
        {
            if (t.Value % req != 0)
                return "-1";
        }
        string f = "";
        // Iterate in the dictionary
        foreach (var t in mp)
        {
            int fre = t.Value / req;
            while (fre-- > 0)
                f += t.Key;
        }
        // String will be returned
        string ans = "";
        while (req-- > 0)
            ans += f;
        // Return the final string
        return ans;
    }
    // Function to find the Greatest Common Divisor (GCD)
    static int GCD(int a, int b)
    {
        while (b != 0)
        {
            int temp = b;
            b = a % b;
            a = temp;
        }
        return a;
    }
    // Driver code
    static void Main()
    {
        string s = "abababa";
        int k = 2;
        // Function call
        Console.WriteLine(KPeriodic(s, k));
    }
}


Javascript




function kPeriodic(s, k) {
    let mp = new Map();
 
    // Store the frequency of each element
    for (let i = 0; i < s.length; i++) {
        let ch = s.charAt(i);
        mp.set(ch, (mp.get(ch) || 0) + 1);
    }
 
    let n = s.length;
    let gcd = calculateGCD(n, k);
    let req = n / gcd;
 
    // If the string cannot be formed
    for (let [key, value] of mp.entries()) {
        if (value % req !== 0) {
            return "-1";
        }
    }
 
    let f = "";
 
    // Iterate in map
    for (let [key, value] of mp.entries()) {
        let fre = value / req;
        for (let i = 0; i < fre; i++) {
            f += key;
        }
    }
 
    // String will be returned
    let ans = "";
    for (let i = 0; i < req; i++) {
        ans += f;
    }
 
    // Return the final string
    return ans;
}
 
function calculateGCD(a, b) {
    if (b === 0) {
        return a;
    }
    return calculateGCD(b, a % b);
}
 
// Test
let s = "abababa";
let k = 2;
 
// Function call
console.log(kPeriodic(s, k));


Output

-1








Time Complexity: O(n*log n)
Auxilairy Space: O(n)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
07 Dec, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments